Neuropathic Allodynia Involves Spinal Neurexin-1β-dependent Neuroligin-1/Postsynaptic Density-95/NR2B Cascade in Rats

Author:

Lin Tzer-Bin1,Lai Cheng-Yuan1,Hsieh Ming-Chun1,Jiang Jian-Lin1,Cheng Jen-Kun1,Chau Yat-Pang1,Ruan Ting1,Chen Gin-Den1,Peng Hsien-Yu1

Affiliation:

1. From the Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (T.-B.L.); Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan (T.-B.L.); Department of Biotechnology, Asia University, Taichung, Taiwan (T.-B.L.); Department of Medicine, Mackay Medical College, New Taipei, Taiwan (C.-Y.L.,

Abstract

Abstract Background: Neuroligin-1 (NL1) forms a complex with the presynaptic neurexin-1β (Nrx1b), regulating clustering of N-methyl-d-aspartate receptors with postsynaptic density-95 (PSD-95) to underlie learning-/memory-associated plasticity. Pain-related spinal neuroplasticity shares several common features with learning-/memory-associated plasticity. The authors thereby investigated the potential involvement of NL1-related mechanism in spinal nerve ligation (SNL)–associated allodynia. Methods: In 626 adult male Sprague–Dawley rats, the withdrawal threshold and NL1, PSD-95, phosphorylated NR2B (pNR2B) expressions, interactions, and locations in dorsal horn (L4 to L5) were compared between the sham operation and SNL groups. A recombinant Nrx1b Fc chimera (Nrx1b Fc, 10 μg, 10 μl, i.t., bolus), antisense small-interfering RNA targeting to NL1 (10 μg, 10 μl, i.t., daily for 4 days), or NR2B antagonist (Ro 25-6981; 1 μM, 10 μl, i.t., bolus) were administered to SNL animals to elucidate possible cascades involved. Results: SNL-induced allodynia failed to affect NL1 or PSD-95 expression. However, pNR2B expression (mean ± SD from 13.1 ± 2.87 to 23.1 ± 2.52, n = 6) and coexpression of NL1–PSD-95, pNR2B–PSD-95, and NL1-total NR2B were enhanced by SNL (from 10.7 ± 2.27 to 22.2 ± 3.94, 11.5 ± 2.15 to 23.8 ± 3.32, and 8.9 ± 1.83 to 14.9 ± 2.27 at day 7, n = 6). Furthermore, neuron-localized pNR2B PSD-95–pNR2B double-labeled and NL1/PSD-95/pNR2B triple-labeled immunofluorescence in the ipsilateral dorsal horn was all prevented by Nrx1b Fc and NL1-targeted small-interfering RNA designed to block and prevent NL1 expression. Without affecting NL1–PSD-95 coupling, Ro 25-6981 decreased the SNL-induced PSD-95–pNR2B coprecipitation (from 18.7 ± 1.80 to 14.7 ± 2.36 at day 7, n = 6). Conclusion: SNL-induced allodynia, which is mediated by the spinal NL1/PSD-95/pNR2B cascade, can be prevented by blockade of transsynaptic Nrx1b–NL1 interactions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3