Transplantation of acellular amniotic membrane seeded with adipose-derived mesenchymal stem cells in a rat model of intrauterine adhesion

Author:

Li Chunbo1,Yao Liangfeng2,He Fengquan3,Hua Keqin1

Affiliation:

1. Department of Obstetrics and Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai

2. Department of Obstetrics and Gynecology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou

3. Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of HongHe Hani and Yi Autonomous Prefecture, Yunnan, China

Abstract

Objective: This study aimed to investigate the role of acellular amniotic membrane (AAM) loaded with adipose-derived mesenchymal stem cells (ADSCs) for the treatment of intrauterine adhesion. Methods: One hundred twenty female Spargue-Dawley rats were randomly divided into four groups: sham operation group (the uterus was picked out and incised without treatment), intrauterine adhesion group, the experimental group treated with AAM, and experimental group treated with AAM loaded with ADSCs. Histological and immunohistochemical analysis were performed on 3, 7, and 14 days after surgery to evaluate the degree of uterine fibrosis and regeneration of injured endometrium. RNA sequencing and real-time PCR were used to explore the potential mechanism by which ADSCs modulated immune response and promoted endometrial regeneration. Results: On 14 days after surgery, the endometrial thickness, number of glands, and degree of fibrosis reduction in the ADSCs/AAM group was higher than those in the AAM group, and similar to the sham operation group. RNA sequencing analysis showed that ADSCs can modulate local immune responses and promote the formation of functional endometrium. Meanwhile, we found that ADSCs significantly decreased the levels of pro-inflammatory cytokines (TNF-α and IL-1β) and increased the levels of anti-inflammatory cytokines (bFGF and IL-6). Conclusion: Our results demonstrated that AAM loaded with ADSCs can result in the regeneration of injured endometrium and fibrosis reduction. Meanwhile, ADSCs also regulated the immune microenvironment, which was beneficial to functional endometrial recovery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3