Machine learning in heart failure diagnosis, prediction, and prognosis: review

Author:

Saqib Muhammad1,Perswani Prinka2,Muneem Abraar3,Mumtaz Hassan4,Neha Fnu5,Ali Saiyad6,Tabassum Shehroze7

Affiliation:

1. Khyber Medical College, Peshawar

2. University of California Riverside, Riverside

3. College of Medicine, The Pennsylvania State University, Hershey, United States

4. BPP University, United Kingdom

5. Jinnah Sindh Medical University, Karachi

6. Saidu Medical College, Swat

7. King Edward Medical University, Lahore, Pakistan

Abstract

Globally, cardiovascular diseases take the lives of over 17 million people each year, mostly through myocardial infarction, or MI, and heart failure (HF). This comprehensive literature review examines various aspects related to the diagnosis, prediction, and prognosis of HF in the context of machine learning (ML). The review covers an array of topics, including the diagnosis of HF with preserved ejection fraction (HFpEF) and the identification of high-risk patients with HF with reduced ejection fraction (HFrEF). The prediction of mortality in different HF populations using different ML approaches is explored, encompassing patients in the ICU, and HFpEF patients using biomarkers and gene expression. The review also delves into the prediction of mortality and hospitalization rates in HF patients with mid-range ejection fraction (HFmrEF) using ML methods. The findings highlight the significance of a multidimensional approach that encompasses clinical evaluation, laboratory assessments, and comprehensive research to improve our understanding and management of HF. Promising predictive models incorporating biomarkers, gene expression, and consideration of epigenetics demonstrate potential in estimating mortality and identifying high-risk HFpEF patients. This literature review serves as a valuable resource for researchers, clinicians, and healthcare professionals seeking a comprehensive and updated understanding of the role of ML diagnosis, prediction, and prognosis of HF across different subtypes and patient populations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3