Genome sequencing provides potential strategies for drug discovery and synthesis

Author:

Zhao Chunsheng1,Zhang Ziwei1,Sun Linlin1,Bai Ronglu1,Wang Lizhi1,Chen Shilin2

Affiliation:

1. School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China

2. School of Chinese Materia Medica, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Abstract

Medicinal plants are renowned for their abundant production of secondary metabolites, which exhibit notable pharmacological activities and great potential for drug development. The biosynthesis of secondary metabolites is highly intricate and influenced by various intrinsic and extrinsic factors, resulting in substantial species diversity and content variation. Consequently, precise regulation of secondary metabolite synthesis is of utmost importance. In recent years, genome sequencing has emerged as a valuable tool for investigating the synthesis and regulation of secondary metabolites in medicinal plants, facilitated by the widespread use of high-throughput sequencing technologies. This review highlights the latest advancements in genome sequencing within this field and presents several strategies for studying secondary metabolites. Specifically, the article elucidates how genome sequencing can unravel the pathways for secondary metabolite synthesis in medicinal plants, offering insights into the functions and regulatory mechanisms of participating enzymes. Comparative analyses of plant genomes allow identification of shared pathways of metabolite synthesis among species, thereby providing novel avenues for obtaining cost-effective biosynthetic intermediates. By examining individual genomic variations, genes or gene clusters associated with the synthesis of specific compounds can be discovered, indicating potential targets and directions for drug development and the exploration of alternative compound sources. Moreover, the advent of gene-editing technology has enabled the precise modifications of medicinal plant genomes. Optimization of specific secondary metabolite synthesis pathways becomes thus feasible, enabling the precise editing of target genes to regulate secondary metabolite production within cells. These findings serve as valuable references and lessons for future drug development endeavors, conservation of rare resources, and the exploration of new resources.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3