Detection of Consciousness by Electroencephalogram and Auditory Evoked Potentials

Author:

Schneider Gerhard1,Hollweck Regina2,Ningler Michael3,Stockmanns Gudrun4,Kochs Eberhard F.5

Affiliation:

1. Assistant Professor.

2. Research Fellow, Institute of Medical Statistics and Epidemiology, Technische Universität München.

3. Research Fellow.

4. Assistant Professor, Institute of Information Technology, University Duisburg-Essen, Campus Duisburg, Germany.

5. Professor, Director, and Chair, Department of Anesthesiology, Klinikum rechts der Isar.

Abstract

Background A set of electroencephalographic and auditory evoked potential (AEP) parameters should be identified that allows separation of consciousness from unconsciousness (reflected by responsiveness/unresponsiveness to command). Methods Forty unpremedicated patients received anesthesia with remifentanil and either sevoflurane or propofol. With remifentanil infusion (0.2 microg . kg . min), patients were asked every 30 s to squeeze the investigator's hand. Sevoflurane or propofol was given until loss of consciousness. After intubation, propofol or sevoflurane was stopped until patients followed the command (return of consciousness). Thereafter, propofol or sevoflurane was started again (loss of consciousness), and surgery was performed. Return of consciousness was observed after surgery. The electroencephalogram and AEP from immediately before and after the transitions were selected. Logistic regression was calculated to identify models for the separation between consciousness and unconsciousness. For the top 10 models, 1,000-fold cross-validation was performed. Backward variable selection was applied to identify a minimal model. Prediction probability was calculated. The digitized electroencephalogram was replayed, and the Bispectral Index was measured and accordingly analyzed. Results The best full model (prediction probability 0.89) contained 15 AEP and 4 electroencephalographic parameters. The best minimal model (prediction probability 0.87) contained 2 AEP and 2 electroencephalographic parameters (median frequency of the amplitude spectrum from 8-30 Hz and approximate entropy). The prediction probability of the Bispectral Index was 0.737. Conclusions A combination of electroencephalographic and AEP parameters can be used to differentiate between consciousness and unconsciousness even in a very challenging data set. The minimal model contains a combination of AEP and electroencephalographic parameters and has a higher prediction probability than Bispectral Index for the separation between consciousness and unconsciousness.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference25 articles.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3