Deep Hypothermia and Rewarming Alters Glutamate Levels and Glycogen Content in Cultured Astrocytes

Author:

Bissonnette Bruno1,Pellerin Luc2,Ravussin Patrick3,Daven Véronique B.4,Magistretti Pierre J.5

Affiliation:

1. Professor of Anaesthesia, Department of Anaesthesia, University of Toronto, Toronto, Ontario, Canada.

2. Assistant Professor, Laboratoire de Recherche Neurologique, Institut de Physiologie et Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

3. Professor of Anaesthesiology, Department of Anaesthesiology and Critical Care Medicine, Sion Hospital, Sion, Switzerland.

4. Laboratory Technician, Service d'Anesthesiologie et de Réanimation, Centre Hospitalier Universitaire Vaudois.

5. Professor of Physiology, Laboratoire de Recherche Neurologique, Institut de Physiologie et Service de Neurologie, Centre Hospitalier Universitaire Vaudois.

Abstract

Background Deep hypothermia has been associated with an increased incidence of postoperative neurologic dysfunction after cardiac surgery in children. Recent studies suggest an excitotoxic mechanism involving overstimulation of glutamate receptors. Extracellular glutamate uptake occurs primarily by astrocytes. Astrocytes also store glycogen, which may be used to sustain the energy-consuming glutamate uptake. Extracellular glutamate and glycogen content were studied during temperature changes mimicking cardiopulmonary bypass in vivo. Methods Primary cultures of cerebral cortical astrocytes were used in a specially designed incubator allowing continuous changes of temperature and ambient gas concentrations. The sequence of events was as follows: normothermia, rapid cooling (2.8 degrees C/min) followed by 60 min of deep hypothermia (15 degrees C), followed by rewarming (3.0 degrees C/min) and subsequent 5 h of mild hyperthermia (38.5 degrees C). Two different conditions of oxygenation were studied: (1) normoxia (25% O2, 70% N2, 5% CO2); or (2) hyperoxia (95% O2, 5% CO2). The extracellular glutamate concentrations and intracellular glycogen levels were measured at nine time points. Results One hundred sixty-two cultures were studied in four independent experiments. The extracellular concentration of glutamate in the normoxic group increased significantly from 35+/-10 nM/mg protein at baseline up to 100+/-15 nM/mg protein at the end of 5 h of mild hyperthermia (P < 0.05). In contrast, extracellular glutamate levels did not vary from control in the hyperoxic group. Glycogen levels decreased significantly from 260+/-85 nM/mg protein at baseline to < 25+/-5 nM/mg protein at the end of 5 h in the normoxic group (P < 0.05) but returned to control levels after rewarming in the hyperoxic group. No morphologic changes were observed in either group. Conclusion The extracellular concentration of glutamate increases, whereas the intracellular glycogen content decreases when astrocytes are exposed to a sequence of deep hypothermia and rewarming. This effect of hypothermia is prevented when astrocytes are exposed to hyperoxic conditions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference33 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3