Microcirculatory Basis for Nonuniform Flow Delivery with Intravenous Nitroprusside

Author:

Mustafa Shahzad S.1,Rivers Richard J.2,Frame Mary D. S.3

Affiliation:

1. Undergraduate Student, Department of Anesthesiology.

2. Associate Professor, Departments of Anesthesiology and Pharmacology and Physiology, Biomedical Engineering Program.

3. Assistant Professor, Department of Anesthesiology, Biomedical Engineering Program.

Abstract

Background The purpose of this study was to determine the effects of systemic infusions of nitroglycerin and sodium nitroprusside on flow distribution and wall shear stress in the microcirculation. Methods With university approval, the cremaster muscle of 28 anesthetized (70 mg/kg pentobarbital given intraperitoneally) hamsters (Harlan Sprague Dawley: Syrian; weight, 121+/-11 g [mean +/- SDD) was observed using in vivo fluorescence microscopy. Arteriolar diameter, erythrocyte flux, and velocity were measured for a feed arteriole and its sequential branches. Observations were made during control (mean arterial pressure, 88+/-4 mm Hg) and after 30 min of intravenous delivery of sodium nitroprusside or nitroglycerin, titrated to decrease mean arterial pressure by 20 mm Hg. Results Sodium nitroprusside significantly dilated select upstream portions of the network (23+/-2.6 to 29+/-2.6 microm); no arterioles were dilated with nitroglycerin. Erythrocyte flux into the feed (i.e., inflow into the arteriolar network) and into the sequential branches (i.e., distribution within the network) were evaluated. With nitroglycerin, inflow decreased significantly from 1,560+/-335 to 855+/-171 cells/s, and flux into the branches decreased evenly. With sodium nitroprusside, inflow increased significantly to 2,600+/-918 cells/s, yet cells were "stolen" from upstream branches (a decrease from 425+/-67 to 309+/-87 cells/s in the first branch). Excess flow passed into a downstream "thorough-fare channel," significantly increasing flux from 347+/-111 to 761+/-246 cells/s. Wall shear stress decreased uniformly with nitroglycerin infusion, with a decrease in the feed from 8.8+/-2.5 to 6+/-1.7 dyn/cm2. With sodium nitroprusside, variable changes occurred that were location specific within the network. For instance, at the inflow point to the network, wall shear stress changed from 8.3+/-2.5 to 4.2+/-3.3 dyn/cm2. Conclusions Nitroglycerin infusion promoted homogeneity of flow. Sodium nitroprusside significantly increased the heterogeneity of flow within this arteriolar network; an anatomic location for steal induced by sodium nitroprusside is identified.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3