Author:
van den Elsen Maarten,Dahan Albert,DeGoede Jacob,Berkenbosch Aad,van Kleef Jack
Abstract
Background
The purpose of this study was to quantify in humans the effects of subanesthetic isoflurane on the ventilatory control system, in particular on the peripheral chemoreflex loop. Therefore we studied the dynamic ventilatory response to carbon dioxide, the effect of isoflurane wash-in upon sustained hypoxic steady-state ventilation, and the ventilatory response at the onset of 20 min of isocapnic hypoxia.
Methods
Study 1: Square-wave changes in end-tidal carbon dioxide tension (7.5-11.5 mmHg) were performed in eight healthy volunteers at 0 and 0.1 minimum alveolar concentration (MAC) isoflurane. Each hypercapnic response was separated into a fast, peripheral component and a slow, central component, characterized by a time constant, carbon dioxide sensitivity, time delay, and off-set (apneic threshold). Study 2: The ventilatory changes due to the wash-in of 0.1 MAC isoflurane, 15 min after the induction of isocapnic hypoxia, were studied in 11 healthy volunteers. Study 3: The ventilatory responses to a step decrease in end-tidal oxygen (end-tidal oxygen tension from 110 to 44 mmHg within 3-4 breaths; duration of hypoxia 20 min) were assessed in eight healthy volunteers at 0, 0.1, and 0.2 MAC isoflurane.
Results
Values are reported as means +/- SF. Study 1: The peripheral carbon dioxide sensitivities averaged 0.50 +/- 0.08 (control) and 0.28 +/- 0.05 l.min-1.mmHg-1 (isoflurane; P < 0.01). The central carbon dioxide sensitivities (control 1.20 +/- 0.12 vs. isoflurane 1.04 +/- 0.11 l.min-1.mmHg-1) and off-sets (control 36.0 +/- 0.1 mmHg vs. isoflurane 34.5 +/- 0.2 mmHg) did not differ between treatments. Study 2: Within 30 s of exposure to 0.1 MAC isoflurane, ventilation decreased significantly, from 17.7 +/- 1.6 (hypoxia, awake) to 15.0 +/- 1.5 l.min-1 (hypoxia, isoflurane). Study 3: At the initiation of hypoxia ventilation increased by 7.7 +/- 1.4 (control), 4.1 +/- 0.8 (0.1 MAC; P < 0.05 vs. control), and 2.8 +/- 0.6 (0.2 MAC; P < 0.05 vs. control) l.min-1. The subsequent ventilatory decrease averaged 4.9 +/- 0.8 (control), 3.4 +/- 0.5 (0.1 MAC; difference not statistically significant), and 2.0 +/- 0.4 (0.2 MAC; P < 0.05 vs. control) l.min-1. There was a good correlation between the acute hypoxic response and the hypoxic ventilatory decrease (r = 0.9; P < 0.001).
Conclusions
The results of all three studies indicate a selective and profound effect of subanesthetic isoflurane on the peripheral chemoreflex loop at the site of the peripheral chemoreceptors. We relate the reduction of the ventilatory decrease of sustained hypoxia to the decrease of the initial ventilatory response to hypoxia.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献