Antinociceptive Effect of Morphine, but not μ Opioid Receptor Number, Is Attenuated in the Spinal Cord of Diabetic Rats

Author:

Chen Shao-Rui1,Pan Hui-Lin2

Affiliation:

1. Research Associate, Department of Anesthesiology.

2. Professor and Director of Basic Research in Anesthesiology, Department of Anesthesiology and Department of Neural and Behavioral Sciences.

Abstract

Background The mechanisms of decreased analgesic potency of mu opioids in diabetic neuropathic pain are not fully known. The authors recently found that G protein activation stimulated by the mu opioid agonist is significantly reduced in the spinal cord dorsal horn in diabetes. In the current study, they determined potential changes in the number and binding affinity of mu opioid receptors in the spinal cord in diabetic rats. Methods Rats were rendered diabetic with an intraperitoneal injection of streptozotocin. The nociceptive withdrawal threshold was measured before and after intrathecal injection of morphine by applying a noxious pressure stimulus to the hind paw. The mu opioid receptor was determined with immunocytochemistry labeling and a specific mu opioid receptor radioligand, [3H]-(D-Ala2,N-Me-Phe4,Gly-ol5)-enkephalin ([3H]-DAMGO), in the dorsal spinal cord obtained from age-matched normal and diabetic rats 4 weeks after streptozotocin treatment. Results The antinociceptive effect of intrathecal morphine (2-10 microg) was significantly reduced in diabetic rats, with an ED50 about twofold higher than that in normal rats. However, both the dissociation constant (3.99 +/- 0.22 vs. 4.01 +/- 0.23 nm) and the maximal specific binding (352.78 +/- 37.26 vs. 346.88 +/- 35.23 fmol/mg protein) of [3H]-DAMGO spinal membrane bindings were not significantly different between normal and diabetic rats. The mu opioid receptor immunoreactivity in the spinal cord dorsal horn also was similar in normal and diabetic rats. Conclusions The reduced analgesic effect of intrathecal morphine in diabetes is probably due to impairment of mu opioid receptor-G protein coupling rather than reduction in mu opioid receptor number in the spinal cord dorsal horn.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3