Effects of Motion on the Performance of Pulse Oximeters in Volunteers

Author:

Barker Steven J.,Shah Nitin K.

Abstract

Background Pulse oximetry is considered a standard of care in both the operating room and the postanesthetic care unit, and it is widely used in all critical care settings. Pulse oximeters may fail to provide valid pulse oximetry data in various situations that produce low signal-to-noise ratio. Motion artifact is a common cause of oximeter failure and loss of accuracy. This study compares the accuracy and data dropout rates of three current pulse oximeters during standardized motion in healthy volunteers. Methods Ten healthy volunteers were monitored by three different pulse oximeters: Nellcor N-200, Nellcor N-3000, and Masimo SET (prototype). Sensors were placed on digits 2, 3, and 4 of the test hand, which was strapped to a mechanical motion table. The opposite hand was used as a stationary control and was monitored with the same pulse oximeters and an arterial cannula. Arterial oxygen saturation rate varied from 100% to 75% by changing the inspired oxygen concentration. While pulse oximetry was both constant and changing, the oximeter sensors were connected before and during motion. Oximeter errors and dropout rates were digitally recorded continuously during each experiment. Results If the oximeter was functioning before motion began, the following are the percentages of time when the instrument displayed a pulse oximetry value within 7% of control: N-200 = 76%, N-3000 = 87%, and Masimo = 99%. When the oximeter sensor was connected after the beginning of motion, the values were N-200 = 68%, N-3000 = 47%, and Masimo = 97%. If the alarm threshold was chosen as pulse oximetry less than 90%, then the positive predictive values (true alarms/ total alarms) are N-200 = 73%, N-3000 = 81%, and Masimo = 100%. In general, N-200 had the greatest pulse oximetry errors and N-3000 had the highest dropout rates. Conclusions The mechanical motions used in this study significantly affected oximeter function, particularly when the sensors were connected during motion, which requires signal acquisition during motion. The error and dropout rate performance of the Masimo was superior to that of the other two instruments during all test conditions. Masimo uses a new paradigm for oximeter signal processing, which appears to represent a significant advance in low signal-to-noise performance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3