Noninvasive Estimate of Work of Breathing Due to the Endotracheal Tube

Author:

Heyer Laurent,Louis Bruno,Isabey Daniel,Lofaso Frederic,Brochard Laurent,Fredberg Jeffrey J.,Harf Alain

Abstract

Background Although evidence suggests that secretions lining the inner wall of the endotracheal tube (ETT) often reduce its cross-sectional area, no data are available on the work of breathing as affected by the ETT. A noninvasive method is proposed for estimating the additional work of breathing necessitated by the ETT in patients whose lungs are mechanically ventilated. This method (the acoustic-Blasius method) involves (1) determining the inner geometry of the ETT using the acoustic reflection method and (2) using these geometric data to solve the Blasius equation that characterizes the ETT pressure drop-flow relation. Methods To evaluate the acoustic-Blasius method in vivo, the authors computed the work of breathing due to the ETT in four healthy persons breathing through an ETT connected to a pressure-support device and in five tracheally intubated patients receiving mechanical assistance in the pressure-support mode. For the tracheally intubated patients, the reference value was the work calculated from the ETT pressure drop measured between the two ends of the ETT using a pressure catheter. Results In the healthy participants and the tracheally intubated patients, there was close agreement between inspiratory work per cycle values estimated by directly measuring the ETT pressure drop and calculated using the acoustic-Blasius method: The difference was consistently less than 0.08 joules (< 10% of the reference value). Conclusions The data show that the acoustic-Blasius method allows noninvasive quantification of the ETT-related work of breathing in situ.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference17 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3