Norepinephrine Facilitates Inhibitory Transmission in Substantia Gelatinosa of Adult Rat Spinal Cord (Part 1)

Author:

Baba Hiroshi1,Shimoji Koki2,Yoshimura Megumu3

Affiliation:

1. Lecturer. Current position: Research Fellow, Department of Anesthesia and Critical Care Medicine, Neural Plasticity Research Group, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.

2. Professor and Chairman.

3. Professor, Department of Physiology, Saga Medical School, Saga, Japan.

Abstract

Background The activation of descending norepinephrine-containing fibers from the brain stem inhibits nociceptive transmission at the spinal level. How these descending noradrenergic pathways exert the analgesic effect is not understood fully. Membrane hyperpolarization of substantia gelatinosa (Rexed lamina II) neurons by the activation of alpha2 receptors may account for depression of pain transmission. In addition, it is possible that norepinephrine affects transmitter release in the substantia gelatinosa. Methods Adult male Sprague-Dawley rats (9-10 weeks of age, 250-300 g) were used in this study. Transverse spinal cord slices were cut from the isolated lumbar cord. The blind whole-cell patch-clamp technique was used to record from neurons. The effects of norepinephrine on the frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents were evaluated. Results In the majority of substantia gelatinosa neurons tested, norepinephrine (10-100 microM) dose-dependently increased the frequency of gamma-aminobutyric acid (GABA)ergic and glycinergic miniature inhibitory postsynaptic currents; miniature excitatory postsynaptic currents were unaffected. This augmentation was mimicked by an alpha1-receptor agonist, phenylephrine (10-60 microM), and inhibited by alpha1-receptor antagonists prazosin (0.5 microM) and 2-(2,6-dimethoxyphenoxyethyl) amino-methyl-1,4-benzodioxane (0.5 microM). Neither postsynaptic responsiveness to exogenously applied GABA and glycine nor the kinetics of GABAergic and glycinergic inhibitory postsynaptic currents were affected by norepinephrine. Conclusion These results suggest that norepinephrine enhances inhibitory synaptic transmission in the substantia gelatinosa through activation of presynaptic alpha1 receptors, thus providing a mechanism underlying the clinical use of alpha1 agonists with local anesthetics in spinal anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3