The physiological basis of renal nuclear medicine

Author:

Peters Adrien Michael1

Affiliation:

1. Department of Nuclear Medicine, King’s College Hospital, London, UK

Abstract

Renal physiology underpins renal nuclear medicine, both academic and clinical. Clearance, an important concept in renal physiology, comprises tissue uptake rate of tracer (tissue clearance), disappearance rate from plasma (plasma clearance), appearance rate in urine (urinary clearance) and disappearance rate from tissue. In clinical research, steady-state plasma clearances of para-amino-hippurate and inulin have been widely used to measure renal blood flow (RBF) and glomerular filtration rate (GFR), respectively. Routinely, GFR is measured at non-steady state as plasma clearance of a filtration agent, such as technetium-99m diethylenetriaminepentaacetic acid. Scaled to three-dimensional whole body metrics rather than body surface area, GFR in women is higher than in men but declines faster with age. Age-related decline is predominantly from nephron loss. Tubular function determines parenchymal transit time, which is important in renography, and the route of uptake of technetium-99m dimercaptosuccinic acid, which is via filtration. Resistance to flow is defined according to the pressure-flow relationship but in renography, only transit time can be measured, which, being equal to urine flow divided by collecting system volume, introduces further uncertainty because the volume is also unmeasurable. Tubuloglomerular feedback governs RBF and GFR, is regulated by the macula densa, mediated by adenosine and renin, and can be manipulated with proximal tubular sodium–glucose cotransporter-2 inhibitors. Other determinants of renal haemodynamics include prostaglandins, nitric oxide and dopamine, while protein meal and amino acid infusion are used to measure renal functional reserve. In conclusion, for measuring renal responses to exogenous agents, steady-state para-amino-hippurate and inulin clearances should be replaced with rubidium-82 and gallium-68 EDTA for measuring RBF and GFR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference106 articles.

1. Functional effects of renal artery stent placement on treated and contralateral kidneys.;Leertouwer;Kidney Int,2002

2. The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O.;Päivärinta;Eur J Nucl Med Mol Imaging Res,2018

3. Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis.;Nitzsche;Kidney Int,1993

4. First-pass measurements of regional blood flow with external detectors.;Mullani;J Nucl Med,1983

5. Colour perfusion imaging: a new application of computed tomography.;Miles;Lancet,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3