Implant Texture and Capsular Contracture: A Review of Cellular and Molecular Pathways

Author:

Wells Hannah J.1,Yang Jenny C.C.1,Edelstein-Keshet Leah2,Isaac Kathryn V.1

Affiliation:

1. The Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, B.C., Canada

2. Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada.

Abstract

Background: Capsular contracture (CC) is a leading cause of morbidity in implant-based breast surgery. Implant surface texture has been implicated in CC development, yet its etiopathogenesis remains unclear. We conducted a systematic review to determine the influence of implant surface texture on cellular and molecular mechanisms involved in the etiopathogenesis of CC. Methods: A systematic review of the MEDLINE, Embase, Web of Science, and Scopus databases was completed to examine the influence of implant texture on cellular and molecular pathways leading to CC. Excluded articles were reviews and those examining solely the clinical presentation of CC. Results: Development of CC includes prolonged inflammation, increased myofibroblast density, parallel arrangement of collagen fibers, and biofilm formation. When compared with textured implants, smooth implants are associated with reduction in parallel collagen, capsule thickness, and sheer frictional force. Microtextured implants trigger a reduced macrophage response and decreased fibroblast activation as compared with smooth and macrotextured surfaces. Bacterial counts on microtextured and smooth surfaces are significantly lower than that of macrotextured surfaces. Both micro- and macrotextured implants have increased matrix metalloproteinases and activation of tumor necrosis factor α pathway, with increased activation of the transforming growth factor β1 pathway relative to smooth implants. Conclusions: Implant surface texture alters the cellular and molecular mechanisms in the chronic inflammatory process leading to CC. Given the complex biological system of cellular and molecular events in CC, a mathematical model integrating these influences may be optimal to deduce the etiopathogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3