Deep learning-based analysis of infrared fundus photography for automated diagnosis of diabetic retinopathy with cataracts

Author:

Xue WenwenORCID,Zhang JuzhaoORCID,Ma Yingyan,Hou Junlin,Xiao Fan,Feng RuiORCID,Zhao RuiweiORCID,Zou Haidong

Abstract

Purpose: To develop deep learning-based networks for the diagnosis of diabetic retinopathy (DR) with cataracts based on infrared fundus images. Setting: Shanghai General Hospital, Shanghai Eye Disease Prevention & Treatment Center, Shanghai, China. Design: Development and evaluation of an artificial intelligence (AI) diagnostic method. Methods: A total of 10 665 infrared fundus images from 4553 patients with diabetes were used to train and test the model. For image quality assessment, left and right eye classification, DR diagnosis and grading, and segmentation of 3 DR lesions, an end-to-end software using EfficientNet and UNet was developed. The accuracy and performance of the software in comparison to human experts was evaluated. Results: The model achieved an accuracy of 75.31% for left and right eye classification, 100% for DR grading and diagnosis tasks, and 73.67% for internal test set, with corresponding areas under the curve (AUCs) of 0.88, 1.00, and 0.89, respectively. For DR lesion segmentation, the AUCs of hemorrhagic, microangioma, and exudative lesions were 0.86, 0.66, and 0.84, respectively. In addition, a contrast test of human-machine film reading confirmed the software's high sensitivity (96.3%) and specificity (90.0%) and consistency with the manual film reading group (κ = 0.869, P < .001). This easily deployable software generated reports quickly and promoted efficient DR screening with cataracts in clinical and community settings. Conclusions: AI-assisted software can perform automatic analysis of infrared fundus images and has substantial application value for the diagnosis of DR patients with cataracts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Sensory Systems,Ophthalmology,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cataract surgery innovations;Indian Journal of Ophthalmology;2024-04-22

2. Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation;Lecture Notes in Computer Science;2024

3. Towards Label-Efficient Deep Learning for Myopic Maculopathy Classification;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3