Computed tomography–based radial endobronchial ultrasound image simulation of peripheral pulmonary lesions using deep learning

Author:

Zhang Chunxi,Zhou Yongzheng,Sun Chuanqi1,Zhang Jilei1,Chen Junxiang,Zheng Xiaoxuan,Li Ying,Liu Xiaoyao1,Liu Weiping1,Sun Jiayuan

Affiliation:

1. Shanghai Intelligent Surgery Center, Shanghai MicroPort MedBot (Group) Co, Ltd, Shanghai, China.

Abstract

ABSTRACT Background and Objectives Radial endobronchial ultrasound (R-EBUS) plays an important role during transbronchial sampling of peripheral pulmonary lesions (PPLs). However, existing navigational bronchoscopy systems provide no guidance for R-EBUS. To guide intraoperative R-EBUS probe manipulation, we aimed to simulate R-EBUS images of PPLs from preoperative computed tomography (CT) data using deep learning. Materials and Methods Preoperative CT and intraoperative ultrasound data of PPLs in 250 patients who underwent R-EBUS–guided transbronchial lung biopsy were retrospectively collected. Two-dimensional CT sections perpendicular to the biopsy path were transformed into ultrasonic reflection and transmission images using an ultrasound propagation model to obtain the initial simulated R-EBUS images. A cycle generative adversarial network was trained to improve the realism of initial simulated images. Objective and subjective indicators were used to evaluate the similarity between real and simulated images. Results Wasserstein distances showed that utilizing the cycle generative adversarial network significantly improved the similarity between real and simulated R-EBUS images. There was no statistically significant difference in the long axis, short axis, and area between real and simulated lesions (all P > 0.05). Based on the experts’ evaluation, a median similarity score of ≥4 on a 5-point scale was obtained for lesion size, shape, margin, internal echoes, and overall similarity. Conclusions Simulated R-EBUS images of PPLs generated by our method can closely mimic the corresponding real images, demonstrating the potential of our method to provide guidance for intraoperative R-EBUS probe manipulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3