Coupling of Cerebral Blood Flow and Oxygen Metabolism in Infant Pigs during Selective Brain Hypothermia

Author:

Walter Bernd,Bauer Reinhard,Kuhnen Gernot1,Fritz Harald2,Zwiener Ulrich

Affiliation:

1. Institute of Physiology, Justus Liebig University, Giessen, Germany

2. Department of Anesthesiology and Intensive Care Medicine, Friedrich Schiller University, Jena, Germany

Abstract

Studies documenting the cerebral hemodynamic consequences of selective brain hypothermia (SBH) have yielded conflicting data. Therefore, the authors have studied the effect of SBH on the relation of cerebral blood flow (CBF) and CMRO2 in the forebrain of pigs. Selective brain hypothermia was induced in seven juvenile pigs by bicarotid perfusion of the head with extracorporally cooled blood. Cooling and stepwise rewarming of the brain to a Tbrain of 38°C, 25°C, 30°C, and 38°C at normothermic Ttrunk (38°C) decreased CBF from 71 ± 12 mL 100 g−1 min−1 at normothermia to 26 ± 3 mL 100 g−1 min−1 and 40 ± 12 mL 100 g−1 min−1 at a Tbrain of 25°C and 30°C, respectively. The decrease of CMRO2 during cooling of the brain to a Tbrain of 25°C resulted in a mean Q10 of 2.8. The ratio between CBF and CMRO2 was increased at a Tbrain of 25°C indicating a change in coupling of flow and metabolism. Despite this change, regional perfusion remained coupled to regional temperatures during deep cerebral hypothermia. The data demonstrate that SBH decreases CBF and oxygen metabolism to a degree comparable with the cerebrovascular and metabolic effects of systemic hypothermia. The authors conclude that, irrespective of a change in coupling of blood flow and metabolism during deep cerebral hypothermia, cerebral metabolism is a main determinant of CBF during SBH.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3