Characterization of Middle Cerebral Artery Occlusion Infarct Development in the Rat Using Fast Nuclear Magnetic Resonance Proton Spectroscopic Imaging and Diffusion-Weighted Imaging

Author:

Norris David G.,Hoehn-Berlage Mathias1,Dreher Wolfgang,Kohno Kanehisa1,Busch Elmar1,Schmitz Bernd1

Affiliation:

1. Max-Planck-Institut für neurologische Forschung, Köln, Germany

Abstract

A nuclear magnetic resonance study of the middle cerebral artery occlusion in the rat is presented. Experiments were performed on seven animals before and after occlusion, which occurred in situ. The emphasis in this study was on evaluating rapid proton spectroscopic imaging. Data were acquired with experimental durations of between 4 and 15 minutes for a 32 by 32 spatial matrix, with 64 spectroscopic data points per spatial element. The spectroscopic data were interleaved with diffusion-weighted nuclear magnetic resonance water images of the same slice. The study was terminated at about 6 hours after occlusion. The brains were then frozen in liquid nitrogen for biochemical imaging. The results showed that the signal from N-acetyl aspartate decreased and that of lactate increased within the infarcted region. The temporal course of these intensity changes varied between animals. Nineteen cortical spreading depressions (CSD) were observed by electrophysiologic monitoring during the experiments. Of these, 11 could be unambiguously detected in the lactate images, and a further 3 were on the threshold of detectability. As only a single slice could be examined, it is possible that the centers of depression for the remaining 6 CSD were outside the slice. To the authors' knowledge, this is the first report of the measurement of CSD using proton spectroscopic imaging. Thus, it is shown that this method is valuable not only in following the continuous evolution of proton metabolites with a good spatial and temporal resolution, but also in observing transient phenomena which are believed to play an important role in the expansion of the infarcted territory.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3