Motorized Robotic Closed Cervical Traction

Author:

Sherrod Brandon A.1,Schwehr Trevor23,Waldram Daniel2,Adams Andrew2,Averett Sterling2,Ha Jeewon2,Kahle Simon2,Mitchell Derek2,Polevoi Seth2,Dailey Andrew T.1,Merryweather Andrew S.2,Mazur Marcus D.1ORCID

Affiliation:

1. Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT

2. Department of Mechanical Engineering, University of Utah, Salt Lake City, UT

3. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD

Abstract

Study Design. Biomechanical study Objective. To demonstrate that robotic cervical traction can apply closed cervical traction as effectively as manual weight-and-pulley traction in extension spring and cadaveric models. Summary of Background Data. Closed cervical traction is used to reduce subaxial cervical spine dislocation injuries and to distract the intervertebral space during cervical spine surgery. Weight-and-pulley cervical traction relies on cumbersome and imprecise technology without any safeguard to prevent over-traction or weights being pulled/released inadvertently. Methods. A prototype robotic traction device was designed and manufactured by the authors with real-time tensile force measurement, ±1-lbs (5 N) force application accuracy, locking/non-backdriveable linear actuators with actuator position sensing, 200-lbs (900 N) maximum force capability, up to 20° of flexion/extension manipulation, <25-lbs (111 N) device weight, and compatibility with Gardner-Wells tongs or Mayfield head clamp. The device was tested using an extension spring model and an intact fresh cadaver specimen to assess applied and desired force over time and radiographic changes in the cervical spine as traction force increased. The cadaver was tested in manual traction initially and then robotic traction in 10-lbs (50 N) increments up to 80-lbs (355 N) to compare methods. Results. The prototype device met or exceeded all requirements. In extension spring testing, the device reached the prescribed forces of both 25-lbs (111 N) and 80-lbs (355 N) accurately and maintained the desired weight. In cadaveric testing, radiographic outcomes were equivalent between the prototype and manual weight-and-pulley traction at 80-lbs (355 N; disk space measurements within ±10% for all levels), and the device reached the desired weight within±1-lbs (5 N) of accuracy at each weight interval. Conclusion. This preliminary work demonstrates that motorized robotic cervical traction can safely and effectively apply controlled traction forces.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3