Enhancing the Anti-tumor Potency of a Novel Siglec-15 Antibody by Engineering its Fc-mediated Effector Functions

Author:

Ding Huandi12,Yao Bing23,Ci Lei4,Feng Jing2,Ouyang Pingkai3,Chen Guoguang3,Hui Xiwu2,Zhou Demin1

Affiliation:

1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing

2. CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang

3. School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing

4. Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China

Abstract

Siglec-15, an inhibitory immune checkpoint, is an emerging target in cancer immunotherapy. Blocking the function of Siglec-15 is an excellent strategy for cancer treatment and antibody blockade has been used to target Siglec-15. However, whether Fc-mediated effector functions contribute to the therapeutic effect of antibodies remains unclear. Herein, we generated a monoclonal antibody, 1-15D1, which had a high binding affinity with Siglec-15 and strongly activated T-cell immune response in vitro. Subsequently, the Fc-mediated effector functions of 1-15D1 were explored in a Siglec-15 humanized mouse model, and further improvement in antitumor efficacy was observed in the mouse IgG2a isotype group. Thus, we demonstrate that the antitumor effects of 1-15D1 were mediated via multiple factors. In addition to the T-cell immune response, 2 novel mechanisms were explored, including the internalization of the cell surface Siglec-15 and Fc-mediated effector functions. In conclusion, our studies not only provide a potential agent for the improvement of cancer immunotherapy but also suggest that a specific role of Fc-mediated immune regulation may improve the therapeutic potency of Siglec-15 monoclonal antibody.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cancer Research,Pharmacology,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3