Human hair follicle-derived mesenchymal stem cells promote tendon repair in a rabbit Achilles tendinopathy model

Author:

Ma Yingyu123,Lin Zhiwei4,Chen Xiaoyi3,Zhao Xin3,Sun Yi1,Wang Ji1,Mou Xiaozhou123,Zou Hai56,Chen Jinyang4

Affiliation:

1. Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China

2. Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China

3. Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China

4. Zhejiang Healthfuture Biomedicine Co., Ltd, Hangzhou, Zhejiang 310052, China

5. Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai 200032, China

6. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

Abstract

Abstract Background: Hair follicles are easily accessible and contain stem cells with different developmental origins, including mesenchymal stem cells (MSCs), that consequently reveal the potential of human hair follicle (hHF)-derived MSCs in repair and regeneration. However, the role of hHF-MSCs in Achilles tendinopathy (AT) remains unclear. The present study investigated the effects of hHF-MSCs on Achilles tendon repair in rabbits. Methods: First, we extracted and characterized hHF-MSCs. Then, a rabbit tendinopathy model was constructed to analyze the ability of hHF-MSCs to promote repair in vivo. Anatomical observation and pathological and biomechanical analyses were performed to determine the effect of hHF-MSCs on AT, and quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining were performed to explore the molecular mechanisms through which hHF-MSCs affects AT. Furthermore, statistical analyses were performed using independent sample t test, one-way analysis of variance (ANOVA), and one-way repeated measures multivariate ANOVA as appropriate. Results: Flow cytometry, a trilineage-induced differentiation test, confirmed that hHF-derived stem cells were derived from MSCs. The effect of hHF-MSCs on AT revealed that the Achilles tendon was anatomically healthy, as well as the maximum load carried by the Achilles tendon and hydroxyproline proteomic levels were increased. Moreover, collagen I and III were upregulated in rabbit AT treated with hHF-MSCs (compared with AT group; P < 0.05). Analysis of the molecular mechanisms revealed that hHF-MSCs promoted collagen fiber regeneration, possibly through Tenascin-C (TNC) upregulation and matrix metalloproteinase (MMP)-9 downregulation. Conclusions: hHF-MSCs can be a treatment modality to promote AT repair in rabbits by upregulating collagen I and III. Further analysis revealed that treatment of AT using hHF-MSCs promoted the regeneration of collagen fiber, possibly because of upregulation of TNC and downregulation of MMP-9, thus suggesting that hHF-MSCs are more promising for AT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3