A Tutorial for Propensity Score Weighting for Moderation Analysis With Categorical Variables

Author:

Griffin Beth Ann1,Schuler Megan S.1,Cefalu Matt2,Ayer Lynsay1,Godley Mark3,Greifer Noah4,Coffman Donna L.5,McCaffrey Daniel F.6

Affiliation:

1. RAND Corporation, Arlington, VA

2. Disney Streaming

3. Chestnut Health Systems, Normal, IL

4. Harvard Institute for Quantitative Social Science, Cambridge, MA

5. University of South Carolina, Columbia, SC

6. ETS, 660 Rosedale Road, Princeton, NJ

Abstract

Objective: To provide step-by-step guidance and STATA and R code for using propensity score (PS) weighting to estimate moderation effects with categorical variables. Research design: Tutorial illustrating the key steps for estimating and testing moderation using observational data. Steps include: (1) examining covariate overlap across treatment groups within levels of the moderator; (2) estimating the PS weights; (3) evaluating whether PS weights improved covariate balance; (4) estimating moderated treatment effects; and (5) assessing the sensitivity of findings to unobserved confounding. Our illustrative case study uses data from 41,832 adults from the 2019 National Survey on Drug Use and Health to examine if gender moderates the association between sexual minority status (eg, lesbian, gay, or bisexual [LGB] identity) and adult smoking prevalence. Results: For our case study, there were no noted concerns about covariate overlap, and we were able to successfully estimate the PS weights within each level of the moderator. Moreover, balance criteria indicated that PS weights successfully achieved covariate balance for both moderator groups. PS-weighted results indicated there was significant evidence of moderation for the case study, and sensitivity analyses demonstrated that results were highly robust for one level of the moderator but not the other. Conclusions: When conducting moderation analyses, covariate imbalances across levels of the moderator can cause biased estimates. As demonstrated in this tutorial, PS weighting within each level of the moderator can improve the estimated moderation effects by minimizing bias from imbalance within the moderator subgroups.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3