Neuroprotective effect of green tea extract (-)-epigallocatechin-3-gallate in a preformed fibril-induced mouse model of Parkinson’s disease

Author:

Shen Jianing1,Xie Junhua1,Ye Liyuan1,Mao Jian2,Sun Shihao2,Chen Weiwei1,Wei Sijia1,Ruan Sisi2,Wang Linhai2,Hu Hangcui1,Wei Jingjing2,Zheng Yao1,Xi Zhouyan1,Wang Ke1,Xu Yan12

Affiliation:

1. Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou

2. Beijing Life Science Academy (BLSA), Beijing, China.

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference46 articles.

1. Cognitive decline in Parkinson disease.;Aarsland;Nat Rev Neurol,2017

2. Parkinson’s disease.;Kalia;Lancet,2015

3. The clinical symptoms of Parkinson’s disease.;Sveinbjornsdottir;J Neurochem,2016

4. Modeling parkinson’s disease with the alpha-synuclein protein.;Gómez-Benito;Front Pharmacol,2020

5. Alpha-synuclein in parkinson’s disease: from pathogenetic dysfunction to potential clinical application.;Xu;Parkinsons Dis,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3