Imperatorin inhibits oxidative stress injury and neuroinflammation via the PI3K/AKT signaling pathway in the MPTP-induced Parkinson’s disease mouse

Author:

Liu Li1,Jiang Lei1,Zhang Jinglan1,Ma Yan1,Wan Min2,Hu Xueqing1,Yang Lian1

Affiliation:

1. Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine

2. Department of Clinical laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China

Abstract

Parkinson’s disease (PD) is a disorder of neurodegeneration. Imperatorin is an active natural furocoumarin characterized by antioxidant, anti-inflammatory, and potent vasodilatory properties. Therefore, we aimed to investigate the biological functions of imperatorin and its mechanisms against PD progression. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) daily for 5 consecutive days to mimic PD conditions in vivo. The MPTP-induced PD model mice were intraperitoneally injected with imperatorin (5 mg/kg) for 25 consecutive days after MPTP administration. The motor and cognitive functions of mice were examined by rotarod test, hanging test, narrow beam test and Morris water maze test. After analysis of MWM test, the expression levels of tyrosine hydroxylase and Iba-1 in the substantia nigra pars compacta were measured by immunohistochemistry staining, immunofluorescence staining and western blotting. The expression levels of striatal dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were also measured. The protein levels of inducible nitric-oxide synthase, cyclooxygenase-2, phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt) in the mouse striatum were estimated by western blotting. The expression levels of proinflammatory cytokines including tumor necrosis factor, interleukin (IL)-1β and IL-6 in the mouse striatum were measured by ELISA kits. The expression levels of superoxide dismutase, malondialdehyde and glutathione in the mouse midbrains were measured with commercially available kits. TUNEL staining was performed to identify the apoptosis of midbrain cells. Histopathologic changes in the mouse striata were assessed by hematoxylin-eosin staining. Imperatorin treatment markedly improved spatial learning and memory abilities of MPTP-induced PD mice. The MPTP-induced dopaminergic neuron loss in the mouse striata was inhibited by imperatorin. Imperatorin also suppressed neuroinflammation and neuronal oxidative stress in the midbrains of MPTP-induced PD mice. Mechanistically, imperatorin treatment inhibited the MPTP-induced reduction in the PI3K/Akt pathway. Imperatorin treatment can prevent dopaminergic neuron degeneration and improve cognitive functions via its potent antioxidant and anti-inflammatory properties in an MPTP-induced PD model in mice by regulating the PI3K/Akt pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3