Comparison of motor function recovery and brain changes in intracerebral hemorrhagic and ischemic rats with similar brain damage

Author:

Tamakoshi Keigo12,Meguro Kota3,Takahashi Yuri4,Oshimi Ryu5,Iwasaki Natsuka6

Affiliation:

1. Department of Physical Therapy, Niigata University of Health and Welfare

2. Institute for Human Movement and Medical Sciences

3. Department of Rehabilitation, Kaetsu Hospital

4. Department of Rehabilitation, Aizawa Hospital

5. Department of Rehabilitation, Saigata Medical Center, National Hospital Organization

6. Department of Rehabilitation, Azuma Neurosurgical Hospital, Niigata, Japan

Abstract

In this study, we compared the mechanisms of brain recovery in intracerebral hemorrhage and ischemia, focusing on synapses, glial cells, and dopamine expression, which are considered fundamental for neural recovery after stroke. Male Wistar rats were divided into intracerebral hemorrhage, ischemia, and sham surgery (SHAM) groups. The intracerebral hemorrhage group was injected with a collagenase solution, the ischemia group was injected with an endothelin-1 solution, and the SHAM group was injected with physiological saline. The motor function of these rats was evaluated using a rotarod test on days 7, 14, 21, and 28 post-surgery. On postoperative day 29, lesion volume was analyzed using Nissl staining. In addition, the protein expression levels of NeuN, GFAP, tyrosine hydroxylase, and PSD95 were analyzed in the striatum and motor cortex. There was no significant difference between the ischemia and intracerebral hemorrhage groups in terms of lesion volume in the striatum; however, the motor recovery of the intracerebral hemorrhage group occurred more rapidly than that of the ischemia group, and the intracerebral hemorrhage group exhibited higher GFAP protein expression in the motor cortex. The rapid motor recovery in intracerebral hemorrhage rats relative to that in ischemia rats may be associated with changes in astrocytes in brain regions remote from the injury site.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke;Physical Medicine and Rehabilitation Clinics of North America;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3