ADAMTS13 deficiency exacerbates neuroinflammation by targeting matrix metalloproteinase-9 in ischemic brain injury

Author:

Jiang Hongxiang12,Hu Juntao3,He Peidong4,Wu Yu1,Li Fei1,Chen Qianxue1

Affiliation:

1. Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan

2. Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells

3. Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China

4. Wuhan, Hubei Province, China, First School of Clinical Medicine of Wuhan University, Wuhan, China

Abstract

Our design aimed to explore the potential involvement of matrix metalloproteinase-9 (MMP-9) in the inflammatory response associated with acute ischemic stroke (AIS). We also aimed to preliminarily examine the potential impact of a disintegrin-like and metalloprotease with thrombospondin type I repeats-13 (ADAMTS13) on MMP-9 in AIS. We conducted oxygen-glucose deprivation models of microglia cells and mice models of AIS with middle cerebral artery occlusion (MCAO). We assessed the expression pattern of MMP-9 with western blotting (WB) and real-time quantitative PCR both in vivo and in vitro. MMP-9 downregulation was achieved by using ACE inhibitors such as trandolapril. For the MCAO model, we used ADAMTS13-deficient mice. We then evaluated the related neurological function scores, cerebral edema and infarct volume. The levels of inflammation-related proteins, such as COX2 and iNOS, were assessed using WB, and the expression of inflammatory cytokines was measured via enzyme-linked immuno sorbent assay in vivo. Our findings indicated that MMP-9 was up-regulated while ADAMTS13 was down-regulated in the MCAO model. Knockdown of MMP-9 reduced both inflammation and ischemic brain injury. ADAMTS13 prevented brain damage, improved neurological function and decreased the inflammation response in mice AIS models. Additionally, ADAMTS13 alleviated MMP-9-induced neuroinflammation in vivo. It showed that ADAMTS13 deficiency exacerbated ischemic brain injury through an MMP-9-dependent inflammatory mechanism. Therefore, the ADAMTS13-MMP-9 axis could have therapeutic potential for the treatment of AIS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3