Machine Learning–Driven Analysis of Individualized Treatment Effects Comparing Buprenorphine and Naltrexone in Opioid Use Disorder Relapse Prevention

Author:

Afshar Majid,Graham Linck Emma J.,Spicer Alexandra B.,Rotrosen John,Salisbury-Afshar Elizabeth M.,Sinha Pratik,Semler Matthew W.,Churpek Matthew M.

Abstract

Objective A trial comparing extended-release naltrexone and sublingual buprenorphine-naloxone demonstrated higher relapse rates in individuals randomized to extended-release naltrexone. The effectiveness of treatment might vary based on patient characteristics. We hypothesized that causal machine learning would identify individualized treatment effects for each medication. Methods This is a secondary analysis of a multicenter randomized trial that compared the effectiveness of extended-release naltrexone versus buprenorphine-naloxone for preventing relapse of opioid misuse. Three machine learning models were derived using all trial participants with 50% randomly selected for training (n = 285) and the remaining 50% for validation. Individualized treatment effect was measured by the Qini value and c-for-benefit, with the absence of relapse denoting treatment success. Patients were grouped into quartiles by predicted individualized treatment effect to examine differences in characteristics and the observed treatment effects. Results The best-performing model had a Qini value of 4.45 (95% confidence interval, 1.02–7.83) and a c-for-benefit of 0.63 (95% confidence interval, 0.53–0.68). The quartile most likely to benefit from buprenorphine-naloxone had a 35% absolute benefit from this treatment, and at study entry, they had a high median opioid withdrawal score (P < 0.001), used cocaine on more days over the prior 30 days than other quartiles (P < 0.001), and had highest proportions with alcohol and cocaine use disorder (P ≤ 0.02). Quartile 4 individuals were predicted to be most likely to benefit from extended-release naltrexone, with the greatest proportion having heroin drug preference (P = 0.02) and all experiencing homelessness (P < 0.001). Conclusions Causal machine learning identified differing individualized treatment effects between medications based on characteristics associated with preventing relapse.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3