Diagnostic Superiority of 18F-FDG PET Over MRI in Detecting Anti-LGI1 Autoimmune Encephalitis

Author:

Liang Menglin,Niu Na,Jia Chenhao,Fan Siyuan1,Liu Linwen2,Cui Ruixue,Guan Hongzhi1

Affiliation:

1. Department of Neurology

2. Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing, China.

Abstract

Objective Our study aimed to investigate the utility of 18F-FDG PET imaging in diagnosing and monitoring patients with anti–leucine-rich glioma-inactivated 1 antibody autoimmune encephalitis (anti-LGI1 AE). We also sought to understand the mechanisms of faciobrachial dystonic seizures (FBDSs). Patients and Methods We analyzed 18F-FDG PET scans from 50 patients with anti-LGI1 AE, using visual and semiquantitative methods, and compared these with 24 healthy controls. All patients tested positive for anti-LGI1 antibodies in serum or cerebrospinal fluid before PET imaging. The patients were divided into FBDS and non-FBDS groups to compare metabolic differences using voxel-based semiquantitative analysis. Finally, we separately analyzed PET images of patients with symptom recurrence. Results The sensitivity of 18F-FDG PET was superior to MRI (97.9% vs 63.8%, respectively; P < 0.001). Semiquantitative analysis revealed hypermetabolism in the basal ganglia, medial temporal lobe, and brainstem, and hypometabolism in most neocortical regions compared with healthy controls. The FBDS group exhibited hypometabolism in the frontal and temporal lobes compared with the non-FBDS group. Among 7 recurrent patients, 3 were confirmed as recurrence and 3 as sequelae by PET. One patient relapsed shortly after discontinuing corticosteroids when PET indicated active lesions. Conclusions 18F-FDG PET scans were more sensitive than MRI in detecting anti-LGI1 AE, which displayed a pattern of hypermetabolism in the basal ganglia and medial temporal lobe, as well as neocortex hypometabolism. Hypometabolism in the frontal and temporal lobes was associated with FBDS. Furthermore, 18F-FDG PET scans can differentiate recurrence from sequelae and guide the timing of immunotherapy cessation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3