Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement

Author:

Shiri Isaac,Salimi Yazdan1,Hervier Elsa1,Pezzoni Agathe1,Sanaat Amirhossein1,Mostafaei Shayan,Rahmim Arman,Mainta Ismini1,Zaidi Habib

Affiliation:

1. Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva

Abstract

Purpose Medical imaging artifacts compromise image quality and quantitative analysis and might confound interpretation and misguide clinical decision-making. The present work envisions and demonstrates a new paradigm PET image Quality Assurance NETwork (PET-QA-NET) in which various image artifacts are detected and disentangled from images without prior knowledge of a standard of reference or ground truth for routine PET image quality assurance. Methods The network was trained and evaluated using training/validation/testing data sets consisting of 669/100/100 artifact-free oncological 18F-FDG PET/CT images and subsequently fine-tuned and evaluated on 384 (20% for fine-tuning) scans from 8 different PET centers. The developed DL model was quantitatively assessed using various image quality metrics calculated for 22 volumes of interest defined on each scan. In addition, 200 additional 18F-FDG PET/CT scans (this time with artifacts), generated using both CT-based attenuation and scatter correction (routine PET) and PET-QA-NET, were blindly evaluated by 2 nuclear medicine physicians for the presence of artifacts, diagnostic confidence, image quality, and the number of lesions detected in different body regions. Results Across the volumes of interest of 100 patients, SUV MAE values of 0.13 ± 0.04, 0.24 ± 0.1, and 0.21 ± 0.06 were reached for SUVmean, SUVmax, and SUVpeak, respectively (no statistically significant difference). Qualitative assessment showed a general trend of improved image quality and diagnostic confidence and reduced image artifacts for PET-QA-NET compared with routine CT-based attenuation and scatter correction. Conclusion We developed a highly effective and reliable quality assurance tool that can be embedded routinely to detect and correct for 18F-FDG PET image artifacts in clinical setting with notably improved PET image quality and quantitative capabilities.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Reference39 articles.

1. Clinical applications of PET in oncology;Radiology,2004

2. Towards enhanced PET quantification in clinical oncology;Br J Radiol,2018

3. PET/CT imaging artifacts;J Nucl Med Technol,2005

4. PET/CT imaging techniques, considerations, and artifacts;J Thorac Imaging,2006

5. PET/CT artifacts;Clin Imaging,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3