The Pathophysiology of Keratoconus

Author:

Vought Rita1ORCID,Greenstein Steven A.12,Gelles John12,Hersh Peter S.12

Affiliation:

1. Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, NJ; and

2. Cornea and Laser Eye Institute, CLEI Center for Keratoconus, Teaneck, NJ.

Abstract

Purpose: Keratoconus is a progressive disease characterized by changes in corneal shape, resulting in loss of visual function. There remains a lack of comprehensive understanding regarding its underlying pathophysiology. This review aims to bridge this gap by exploring structural failures and inflammatory processes involved in the etiology and progression of keratoconus. Methods: A literature review was conducted using PubMed and Google Scholar databases, screening for articles published in English using the keyword combinations of “keratoconus” with “pathophysiology,” “pathology,” “metabolism,” “inflammatory,” “oxidative stress,” “cytokines,” “enzymes,” “collagen,” and “cornea.” Articles published between January 1, 1970, and June 1, 2023, were queried and reviewed, with greater emphasis placed on more recent data. Fifty-six relevant studies were examined to develop a thorough review of the pathophysiological mechanisms at play in keratoconus. Results: Biomechanical structural failures in the cornea seem to be the primary militating factors in keratoconus etiology and progression. These include disruptions in the arrangement in the collagen lamellae, a decrease in collagen levels, a decrease in natural collagen crosslinking, and changes in lysosomal enzyme activity. Immunologic changes have also been identified in keratoconus, challenging the traditional view of the condition as noninflammatory. Elevated levels of proinflammatory cytokines like IL-1b, IL-6, IL-17, and TNF-α have been observed, along with increased apoptosis of keratocytes. Increased oxidative stress leads to the activation of collagenase and gelatinase enzymes. Conclusions: Keratoconus is a complex condition influenced by both structural defects and inflammatory processes. Understanding these mechanisms can inform clinical management and potentially lead to more effective treatments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3