The effect and mechanism of inulin on atherosclerosis is mediated by the characteristic intestinal flora and metabolites

Author:

Li Zhenwei1,Xu Qingqing2,Huangfu Ning1,Cui Hanbin1

Affiliation:

1. Department of Cardiology

2. Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, China

Abstract

Background Inflammation and hyperlipidemia can cause atherosclerosis. Prebiotic inulin has been proven to effectively reduce inflammation and blood lipid levels. Utilizing a mouse model induced by a high-fat diet, this study aimed to explore whether the characteristic intestinal flora and its metabolites mediate the effects of inulin intervention on atherosclerosis and to clarify the specific mechanism. Methods Thirty apolipoprotein E-deficient (ApoE−/−) mice were randomly divided into three groups. They were fed with a normal diet, a high-fat diet or an inulin+high-fat diet for 16 weeks. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in the three groups were compared. The gross aorta and aortic sinus of mice were stained with oil red O, and the area of atherosclerotic plaque was observed and compared. The diversity and structure of the mouse fecal flora were detected by sequencing the V3–V4 region of the 16S rRNA gene, and the levels of metabolites in mouse feces were assessed by gas chromatography-mass spectrometry. The plasma lipopolysaccharide (LPS) levels and aortic inflammatory factors were measured by multi-index flow cytometry (CBA). Results ApoE−/− mice fed with the high-fat diet exhibited an increase of approximately 46% in the area of atherosclerotic lesions, and the levels of TC, TG and LDL-C were significantly increased (P < 0.05) compared with levels in the normal diet group. After inulin was added to the high-fat group, the area of atherosclerotic lesions, the level of serum LPS and aortic inflammation were reduced, and the levels of TC, TG and LDL-C were decreased (P < 0.05). Based on 16S rRNA gene detection, we found that the composition of the intestinal microbiota, such as Prevotella, and metabolites, such as L-arginine, changed significantly due to hyperlipidemia, and the dietary inulin intervention partially reversed the relevant changes. Conclusion Inulin can inhibit the formation of atherosclerotic plaques, which may be related to the changes in lipid metabolism, the composition of the intestinal microbial community and its metabolites, and the inhibition of the expression of related inflammatory factors. Our study identified the relationships among the characteristic intestinal microbiota, metabolites and atherosclerosis, aiming to provide a new direction for future research to delay or treat atherosclerosis by changing the composition and function of the host intestinal microbiota and metabolites.

Funder

the Key Technology R&D Program of Ningbo

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference45 articles.

1. Clonal hematopoiesis, aging, and cardiovascular diseases.;Pardali;Exp Hematol,2020

2. Heart disease and stroke statistics-2018 update: a report from the American Heart Association.;Benjamin;Circulation,2018

3. Macrophages in atherosclerosis regression.;Barrett;Arterioscl Throm Vas,2020

4. Vascular macrophages in atherosclerosis.;Xu;Immunol Res,2019

5. Regulation of macrophage immunometabolism in atherosclerosis.;Koelwyn;Nat Immunol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3