Beneficial Effect of Calcium Treatment for Hyperkalemia Is Not Due to “Membrane Stabilization”

Author:

Piktel Joseph S.1,Wan Xiaoping2,Kouk Shalen3,Laurita Kenneth R.4,Wilson Lance D.1

Affiliation:

1. Department of Emergency Medicine, Emergency Care and Research and Innovation, MetroHealth Campus, Case Western Reserve University, Cleveland, OH.

2. Department of Physiology & Cell Biology, The Ohio State University, College of Medicine, Columbus, OH.

3. Orthopedic Surgery and Sports Medicine, Mercy Clinic, St. Louis, MO.

4. The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH.

Abstract

Objectives: Hyperkalemia is a common life-threatening condition causing severe electrophysiologic derangements and arrhythmias. The beneficial effects of calcium (Ca2+) treatment for hyperkalemia have been attributed to “membrane stabilization,” by restoration of resting membrane potential (RMP). However, the underlying mechanisms remain poorly understood. Our objective was to investigate the mechanisms underlying adverse electrophysiologic effects of hyperkalemia and the therapeutic effects of Ca2+ treatment. Design: Controlled experimental trial. Setting: Laboratory investigation. Subjects: Canine myocytes and tissue preparations. Interventions and Measurements: Optical action potentials and volume averaged electrocardiograms were recorded from the transmural wall of ventricular wedge preparations (n = 7) at baseline (4 mM potassium), hyperkalemia (8–12 mM), and hyperkalemia + Ca2+ (3.6 mM). Isolated myocytes were studied during hyperkalemia (8 mM) and after Ca2+ treatment (6 mM) to determine cellular RMP. Main Results: Hyperkalemia markedly slowed conduction velocity (CV, by 67% ± 7%; p < 0.001) and homogeneously shortened action potential duration (APD, by 20% ± 10%; p < 0.002). In all preparations, this resulted in QRS widening and the “sine wave” pattern observed in severe hyperkalemia. Ca2+ treatment restored CV (increase by 44% ± 18%; p < 0.02), resulting in narrowing of the QRS and normalization of the electrocardiogram, but did not restore APD. RMP was significantly elevated by hyperkalemia; however, it was not restored with Ca2+ treatment suggesting a mechanism unrelated to “membrane stabilization.” In addition, the effect of Ca2+ was attenuated during L-type Ca2+ channel blockade, suggesting a mechanism related to Ca2+-dependent (rather than normally sodium-dependent) conduction. Conclusions: These data suggest that Ca2+ treatment for hyperkalemia restores conduction through Ca2+-dependent propagation, rather than restoration of membrane potential or “membrane stabilization.” Our findings provide a mechanistic rationale for Ca2+ treatment when hyperkalemia produces abnormalities of conduction (i.e., QRS prolongation).

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3