Analysis of the influence of pyroptosis-related genes on molecular characteristics in patients with acute myocardial infarction

Author:

Wu Huan1ORCID,Xiong Xiaoman1,CUI Xueying2,Xiong Jianlong1,Zhang Yan1,Xiang Liubo1,Xu TAO1

Affiliation:

1. School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China

2. Qingyun County People’s Hospital, Qingyun, Shandong, China.

Abstract

Pyroptosis is a newly identified mode of programmed cell death, but the potential role in patients with acute myocardial infarction (AMI) remains unclear. In this study, bioinformatics methods were used to identify differentially expressed genes from peripheral blood transcriptome data between normal subjects and patients with AMI which were downloaded by the Gene Expression Omnibus database. Comparing Random Forest (RF) and Support Vector Machine (SVM) training algorithms were used to identify pyroptosis-related genes, predicting patients with AMI by nomogram based on informative genes. Moreover, clustering was used to amplify the feature of pyroptosis, in order to facilitate analysis distinct biological differences. Diversity analysis indicated that a majority of pyroptosis-related genes are expressed at higher levels in patients with AMI. The receiver operating characteristic curves show that the RF model is more responsive than the SVM machine learning model to the pyroptosis characteristics of these patients in vivo. We obtained a column line graph diagnostic model which was developed based on 19 genes established by the RF model. After the consensus clustering algorithm of single sample Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, the results for them found that pyroptosis-related genes mediate the activation of multiple immune cells and many inflammatory pathways in the body. We used RF and SVM algorithms to determine 19 pyroptosis-related genes and evaluate their immunological effects in patients with AMI. We also constructed a series of by nomogram related to pyroptosis-related genes to predict the risk of developing AMI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3