Mechanism of Yiqi Huoxue Huatan recipe in the treatment of coronary atherosclerotic disease through network pharmacology and experiments

Author:

Huang Hong-Tao1,Lv Wen-Qing2,Xu Fei-Yue3,Wang Xiao-Long2,Yao Yi-Li2,Su Li-Jie2,Zhao Han-Jun4,Huang Yu2

Affiliation:

1. Nantong University Medical School, Nantong, China

2. Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. Shanghai Pudong New District Pudong Hospital, Shanghai, China

4. Shanghai Pudong New District Zhoupu Hospital, Shanghai, China.

Abstract

In recent years, with population aging and economic development, morbidity and mortality of atherosclerotic cardiovascular disease associated with atherosclerosis (AS) have gradually increased. In this study, a combination of network pharmacology and experimental verification was used to systematically explore the action mechanism of Yiqi Huoxue Huatan Recipe (YHHR) in the treatment of coronary atherosclerotic heart disease (CAD). We searched and screened the active ingredients of Coptis chinensis, Astragalus membranaceus, Salvia miltiorrhiza, and Hirudo. We also searched multiple databases for related target genes corresponding to the compounds and CAD. STRING was used to construct the protein-protein interaction (PPI) network of genes. Metascape was used to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common targets to analyze the main pathways, and finally, the molecular docking and main possible pathways were verified by experimental studies. Firstly, a total of 1480 predicted target points were obtained through the Swiss Target Prediction database. After screening, merging, and deleting duplicate values, a total of 768 targets were obtained. Secondly, “Coronary atherosclerotic heart disease” was searched in databases such as the OMIM, GeneCards, and TTD. 1844 disease-related targets were obtained. Among PPI network diagram of YHHR-CAD, SRC had the highest degree value, followed by AKT1, TP53, hsp90aa1 and mapk3. The KEGG pathway bubble diagram was drawn using Chiplot, the Signal pathways such as NF kappa B signaling pathway, Lipid and AS, and Apelin signaling pathway are closely related to the occurrence of CAD. The PCR and Western blot methods were used to detect the expression of NF-κB p65. When compared with that in the model group, the expression of NF-κB p65mRNA decreased in the low-concentration YHHR group, with P < .05, while the expression of NF-κB p65mRNA decreased significantly in the high-concentration YHHR group, with P < .01. On the other hand, when compared with that in the model group, the expression of NF-κB p65 decreased in the low-concentration YHHR group, but was not statistically significant, while the expression of NF-κB p65 was significant in the high-concentration YHHR group, and has statistical significance with P < .05. YHHR has been shown to resist inflammation and AS through the SRC/NF-κB signaling pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Reference61 articles.

1. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease.;Herrington;Circ Res,2016

2. Prevalence and prevention of cardiovascular disease and diabetes mellitus.;Balakumar;Pharmacol Res,2016

3. Defective autophagy in atherosclerosis: to die or to senesce?;Grootaert;Oxid Med Cell Longev,2018

4. Long noncoding RNAs in atherosclerosis: JACC review topic of the week.;Zhang;J Am Coll Cardiol,2018

5. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review.;Milutinovic;Bosn J Basic Med Sci,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3