Mining of clinical and prognosis related genes in the tumor microenvironment of endometrial cancer: A field synopsis of observational study

Author:

Li Wenxue1ORCID,Qin Yujing1,Chen Xiujuan1,Wang Xiaolei1

Affiliation:

1. Department of Obstetrics and Gynecology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong, China.

Abstract

Endometrial cancer (EC) is the sixth most common malignant tumor in women worldwide, and its morbidity and mortality are on the rise. The purpose of this study was to explore potential tumor microenvironment (TME)-related biomarkers associated with the clinical features and prognosis of EC. The Estimating Stromal and Immune Cells in Malignancy Using Expression Data (ESTIMATE) algorithm was used to calculate TME immune and stromal scores of EC samples and to analyze the relationship between immune/stromal scores, clinical features, and prognosis. Heat maps and Venn maps were used to screen for differentially expressed genes (DEGs). The ESTIMATE algorithm revealed immune score was significantly correlated with overall survival and tumor grade in patients with EC. A total of 1448 DEGs were screened, of which 387 were intersecting genes. Gene Ontology (GO) analysis revealed that the biological processes (BP) related to intersecting genes mainly included T cell activation and regulation of lymphocyte activation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the intersecting genes were closely related to immune-related signaling pathways. Thirty core genes with more than 7 nodes were identified using protein–protein interaction (PPI) analysis. Six independent prognostic genes of EC were identified using Kaplan–Meier survival analysis and multivariate Cox analysis, namely CD5, BATF, CACNA2D2, LTA, CD52, and NOL4, which are all immune-infiltrating genes that are closely related to clinical features. The current study identified 6 key genes closely related to immune infiltration in the TME of EC that predict clinical outcomes, which may provide new insights into novel prognostic biomarkers and immunotherapy for patients with EC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3