Affiliation:
1. Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Abstract
This study aimed to identify novel biomarkers associated with cuproptosis in human nonobstructive azoospermia (NOA). We obtained 4 NOA microarray datasets (GSE145467, GSE9210, GSE108886, and GSE45885) from the NCBI Gene Expression Omnibus database and merged them into training set. Another NOA dataset (GSE45887) was used as validation set. Differentially expressed cuproptosis-related genes were identified from training set. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted. Least absolute shrinkage and selection operator regression and support vector machine-recursive feature elimination were used to identify hub cuproptosis-related genes. We calculated the expression of the hub cuproptosis-related genes in both validation set and patients with NOA. Gene set variation analysis was used to explore their potential biological functions. The risk prediction model was built by logistic regression analysis and was evaluated in the validation set. Finally, we constructed a competing endogenous RNA network. The training set included 29 patents in the control group and 92 in the NOA group, and 10 cuproptosis-related differentially expressed genes were identified. Subsequently, we screened 6 hub cuproptosis-related genes (DBT, GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1) by least absolute shrinkage and selection operator regression and support vector machine-recursive feature elimination. GCSH, NFE2L2, NLRP3, and SLC31A1 expressed higher in NOA group than in control group (P < .05) in the validation set (4 patients in control and 16 in NOA groups), while the expression levels of GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1 were higher in NOA group than in control group (P < .05) in our patients (3 patients in control and 4 in NOA groups). The model based on the 6-gene signature showed superior performance with an AUC value of 0.970 in training set, while 1.0 in validation set. Gene set variation analysis revealed a higher enrichment score of “homologous recombination” in the high expression groups of the 6 hub genes. Finally, we constructed a competing endogenous RNA network and found hsa-miR-335-3p and hsa-miR-1-3p were the most frequently related to the 6 hub genes. DBT, GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1 may serve as predictors of cuproptosis and play important roles in the NOA pathogenesis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Reference39 articles.
1. Genetic aspects of male infertility: from bench to clinic.;Ben Rhouma;Gynecol Obstet Fertil Senol,2019
2. Point-of-care whole-exome sequencing of idiopathic male infertility.;Fakhro;Genet Med,2018
3. Genetic factors of non-obstructive azoospermia: consequences on patients’ and offspring health.;Krausz;J Clin Med,2021
4. Clinical management of nonobstructive azoospermia: An update.;Takeshima;Int J Urol,2024
5. Omics and male infertility: highlighting the application of transcriptomic data.;Omolaoye;Life (Basel),2022