Bioinformatics strategies to identify differences in molecular biomarkers for ischemic stroke and myocardial infarction

Author:

Wang Min1ORCID,Gao Yuan2,Chen Huaqiu3,Shen Ying4,Cheng Jianjie5,Wang Guangming16ORCID

Affiliation:

1. School of Clinical Medicine, Dali University, Dali, Yunnan, P.R. China

2. School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, P.R. China

3. Xichang People’s Hospital, Xichang, Sichuan, P.R. China

4. The First Hospital of Liangshan, Xichang, Sichuan, P.R. China

5. The First Affiliated Hospital of Dali University, Yunnan, P.R. China

6. Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, P.R. China.

Abstract

Ischemic strokes (ISs) are commonly treated by intravenous thrombolysis using a recombinant tissue plasminogen activator; however, successful treatment can only occur within 3 hours after the stroke. Therefore, it is crucial to determine the causes and underlying molecular mechanisms, identify molecular biomarkers for early diagnosis, and develop precise preventive treatments for strokes. We aimed to clarify the differences in gene expression, molecular mechanisms, and drug prediction approaches between IS and myocardial infarction (MI) using comprehensive bioinformatics analysis. The pathogenesis of these diseases was explored to provide directions for future clinical research. The IS (GSE58294 and GSE16561) and MI (GSE60993 and GSE141512) datasets were downloaded from the Gene Expression Omnibus database. IS and MI transcriptome data were analyzed using bioinformatics methods, and the differentially expressed genes (DEGs) were screened. A protein–protein interaction network was constructed using the STRING database and visualized using Cytoscape, and the candidate genes with high confidence scores were identified using Degree, MCC, EPC, and DMNC in the cytoHubba plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed using the database annotation, visualization, and integrated discovery database. Network Analyst 3.0 was used to construct transcription factor (TF) – gene and microRNA (miRNA) – gene regulatory networks of the identified candidate genes. The DrugBank 5.0 database was used to identify gene–drug interactions. After bioinformatics analysis of IS and MI microarray data, 115 and 44 DEGS were obtained in IS and MI, respectively. Moreover, 8 hub genes, 2 miRNAs, and 3 TFs for IS and 8 hub genes, 13 miRNAs, and 2 TFs for MI were screened. The molecular pathology between IS and MI presented differences in terms of GO and KEGG enrichment pathways, TFs, miRNAs, and drugs. These findings provide possible directions for the diagnosis of IS and MI in the future.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3