Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Taxus chinensis against non-small cell lung cancer

Author:

Zhang Shujuan1,Wang Jun1,Zhang Hailong12ORCID

Affiliation:

1. Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China

2. The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.

Abstract

Taxus chinensis (TC) has tremendous therapeutic potential in alleviating non-small cell lung cancer (NSCLC), but the mechanism of action of TC remains unclear. Integrated bioinformatics and network pharmacology were employed in this study to explore the potential targets and molecular mechanism of TC against NSCLC. Data obtained from public databases were combined with appropriate bioinformatics tools to identify the common targets for TC and NSCLC. Common targets were uploaded to the Metascape database for gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A protein–protein interaction network was established, and topological analysis was performed to obtain hub genes. The expression of the hub genes in NSCLC tissues and their consequent effects on the prognosis of patients with NSCLC were confirmed using the Human Protein Atlas database and appropriate bioinformatics tools. Molecular docking was used to verify the binding affinity between the active ingredients and hub targets. We found 401 common targets that were significantly enriched in the cancer, MAPK signaling, and PI3K/Akt signaling pathways. Proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 1, phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1), AKT serine/threonine kinase 1 (AKT1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and lymphocyte-specific protein tyrosine kinase were identified as the hub genes. Immunohistochemical results confirmed that the expression of SRC, mitogen-activated protein kinase 1, PIK3R1, AKT1, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha was upregulated in the NSCLC tissues, while survival analysis revealed the expression of SRC, AKT1, PIK3R1, and lymphocyte-specific protein tyrosine kinase was closely related to the prognosis of patients with NSCLC. Molecular docking results confirmed all bioactive ingredients present in TC strongly bound to hub targets. We concluded that TC exhibits an anti-NSCLC role through multi-target combination and multi-pathway cooperation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3