3D printing in the endovascular treatment of visceral artery aneurysms

Author:

Soliński Daniel Grzegorz1ORCID,Celer Marcin1,Dyś Krzysztof1,Witkiewicz Wojciech1,Wiewióra Maciej2

Affiliation:

1. Regional Specialist Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland

2. Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.

Abstract

Visceral artery aneurysms (VAAs) are vascular pathologies that are difficult to treat. The variable geometry of the vessels and the location of aneurysms render difficult their evaluation in radiological imaging studies. Less invasive endovascular procedures are increasingly used in common practice. Our aim was to test the feasibility of using 3D printing technology in the preparation of preoperative spatial models of visceral artery aneurysms and their impact on interventional treatment. In our observational study, we examined a group of patients with true aneurysms of the visceral arteries who were followed and who underwent endovascular procedures with the use of 3D prints for better imaging of vascular lesions. We analyzed the fused filament fabrication method of 3D printing and printable materials in the preparation of spatial vascular models. We confirmed that more accurate visualization and analysis of vascular anatomy could assist operators in attempting minimally invasive treatment with good results. Extending imaging studies using 3D printing models that allow for the assessment of the position, morphology and geometry of the aneurysm sac, particularly of vessel branches, could encourage surgeons to perform endovascular procedures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3‐Dimensional printing in vascular disease: From manufacturer to clinical use;Seminars in Vascular Surgery;2024-09

2. Innovation in pathogenesis and management of aortic aneurysm;World Journal of Experimental Medicine;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3