Research on the resistance of isoviolanthin to hydrogen peroxide-triggered injury of skin keratinocytes based on Transcriptome sequencing and molecular docking

Author:

Wang Jie1ORCID,Yin Hao2,Zhu Wei1,He Qingyi1,Zhang Haitang3,Sun Lu3,Qiao Yunxiao3,Xiang Yanwei134

Affiliation:

1. School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

4. Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.

Abstract

Apoptosis of skin keratinocytes is closely associated with skin problems in humans and natural flavonoids have shown excellent biological activity. Hence, the study of flavonoids against human keratinocyte apoptosis has aroused the interest of numerous researchers. In this study, methyl thiazolyl tetrazolium (MTT) assay and Western blots were used to investigate the skin-protective effect of isoviolanthin, a di-C-glycoside derived from Dendrobium officinale, on hydrogen peroxide (H2O2)-triggered apoptosis of skin keratinocytes. Transcriptome sequencing (RNA-Seq) was used to detect the altered expression genes between the model and treatment group and qRT-PCR was used to verify the accuracy of transcriptome sequencing results. Finally, molecular docking was used to observe the binding ability of isoviolanthin to the selected differential genes screened by transcriptome sequencing. Our results found isoviolanthin could probably increase skin keratinocyte viability, by resisting against apoptosis of skin keratinocytes through downregulating the level of p53 for the first time. By comparing transcriptome differences between the model and drug administration groups, a total of 2953 differential expression genes (DEGs) were identified. Enrichment analysis showed that isoviolanthin may regulate these pathways, such as DNA replication, Mismatch repair, RNA polymerase, Fanconi anemia pathway, Cell cycle, p53 signaling pathway. Last, our results found isoviolanthin has a strong affinity for binding to KDM6B, CHAC2, ESCO2, and IPO4, which may be the potential target for treating skin injuries induced by reactive oxide species. The current study confirms isoviolanthin potential as a skin protectant. The findings may serve as a starting point for further research into the mechanism of isoviolanthin protection against skin damage caused by reactive oxide species (e.g., hydrogen peroxide)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3