Roles of the crucial mitochondrial DNA in hypertrophic cardiomyopathy prognosis and diagnosis: A review

Author:

Liao Xuewen1,Zhou Shunkai2,Zeng Dehua3,Ying Wenmin4,Lian Duohuang2,Zhang Meiqing2,Ge Jianjun5,Chen Mengmeng2,Liu Yaming2,Lin Yazhou1

Affiliation:

1. Department of Cardiology, Fujian Provincial Hospital, Fuzhou City, China

2. Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China

3. Department of Pathology, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China

4. Department of Radiotherapy, Fuding Hospital, Fuding City, China

5. Department of Thoracic Surgery, No. 2 Hospital of Nanping City, Nanping City, China.

Abstract

Mitochondrial DNA is implicated in hypertrophic cardiomyopathy (HCM) development. We aimed to identify valuable mtDNAs that contribute to the development of HCM. Differentially expressed mitochondrial DNAs (DEMGs) between HCM and controls were screened. GO and KEGG functional enrichment analyses were performed, and the optimum genes were explored using the LASSO regression mode and SVM-RFE model. A diagnostic scoring model was constructed and verified using ROC curves. Mitochondria-based subtypes were identified. Immune performance among the subtypes including immune cells, immune checkpoint genes, and HLA family genes was analyzed. Finally, an mRNA-transcription factor (TF)-miRNA network was constructed using Cytoscape software. Twelve DEMGs in HCM were selected. Among them, 6 DEMGs, including PDK4, MGST1, TOMM40, LYPLAL1, GATM, and CPT1B were demonstrated as DEMGs at the point of intersection of Lasso regression and SVM-RFE. The ROC of the model for the training and validation datasets was 0.999 and 0.958, respectively. Two clusters were divided, and 4 immune cell types were significantly different between the 2 clusters, including resting mast cells, macrophages M2, and plasma cells. Nine upregulated KEGG pathways were enriched in cluster 1 vs. cluster 2 including O-glycan biosynthesis, the ErbB signaling pathway, and the GnRH signaling pathway. Meanwhile, 49 down-regulated pathways were enriched such as the toll-like signaling pathway and natural killer cell-mediated cytotoxicity pathway. The 6 gene-based mRNA-TF-miRNA networks included other 133 TFs and 18 miRNAs. Six DEMGs in HCM, including PDK4, MGST1, TOMM40, LYPLAL1, GATM, and CPT1B, can be indicative of HCM prognosis or disease progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3