Dual-allele heterozygous mutation of DNAH5 gene in a boy with primary ciliary dyskinesia: A case report

Author:

Shi Yu1,Lei Qihong1,Han Qing1ORCID

Affiliation:

1. Department of Respiratory, Children’s Hospital of Nanjing Medical University, Nanjing, China.

Abstract

Rationale: To analyze clinical and imaging features, ciliary structure and family gene mutation loci of a primary ciliary dyskinesia (PCD) boy with a dual-allele heterozygous mutation of DNAH5. Patient concerns: Clinical data of the proband and relatives. Electronic bronchoscopy, transmission electron microscope (TEM) of the cilia and next-generation sequencing (NGS) were performed. PCD-related DNAH5 exon mutation sites were searched. Diagnoses: A 10-year and 10-month-old boy was hospitalized due to “recurrent cough, expectoration, sputum and shortness of breathing after activity for over 7 years, and aggravated for 1 week.” Moderate and fine wet rales were detected in bilateral lungs. Clubbing fingers and toes were observed. In local hospitals, he was diagnosed with Mycoplasma pneumoniae infection and Streptococcus pneumoniae was cultured. Interventions: Pulmonary function testing showed mixed ventilation dysfunction and positive for bronchial dilation test. Imaging examination and fiberoptic bronchoscopy revealed transposition of all viscera, bilateral pneumonia, and bronchiectasis. TEM detected no loss of the outer dynein arms. NGS identified 2 mutations (c.4360C>T, c.9346C>T) in the DNAH5 gene inherited from healthy parents. Outcomes: According to literature review until 2022, among 144 exon gene mutations causing amino acid changes, C>T mutation is the most common in 44 cases, followed by deletion mutations in 30 cases. Among the amino acid changes induced by gene mutation, terminated mutations were identified in 89 cases. Lessons: For suspected PCD patients, TEM and NGS should be performed. Prompt diagnosis and treatment may delay the incidence of bronchiectasis and improve clinical prognosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3