A new potential therapeutic approach for ALS: A case report with NGS analysis

Author:

Hu Chaur-Jong12,Chen Po-Chih12,Padmanabhan Neeraj3,Zahn Andre4,Ho Chih-Ming5,Wang Kuan6,Yen Yun678ORCID

Affiliation:

1. Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

2. Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan

3. Department of Chemical and Biomolecular Engineering Henry Samueli School of Engineering at the University of California Los Angeles, Los Angeles, CA

4. Department of General Medicine, Taipei Medical University Hospital, Taipei City, Taiwan

5. Mechanical and Aerospace Engineering Henry Samueli School of Engineering University of California, Los Angeles, CA

6. Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan, ROC

7. Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC

8. Center for Cancer Translational Research, Tzu-Chi University, Hualien, Taiwan, ROC.

Abstract

Rationale: Amyotrophic lateral sclerosis (ALS) poses a significant clinical challenge due to its rapid progression and limited treatment options, often leading to deadly outcomes. Looking for effective therapeutic interventions is critical to improve patient outcomes in ALS. Patient concerns: The patient, a 75-year-old East Asian male, manifested an insidious onset of right-hand weakness advancing with dysarthria. Comprehensive Next-generation sequencing analysis identified variants in specific genes consistent with ALS diagnosis. Diagnoses: ALS diagnosis is based on El Escorial diagnostic criteria. Interventions: This study introduces a novel therapeutic approach using artificial intelligence phenotypic response surface (AI-PRS) technology to customize personalized drug-dose combinations for ALS. The patient underwent a series of phases of AI-PRS-assisted trials, initially incorporating a 4-drug combination of Ibudilast, Riluzole, Tamoxifen, and Ropinirole. Biomarkers and regular clinical assessments, including nerve conduction velocity, F-wave, H-reflex, electromyography, and motor unit action potential, were monitored to comprehensively evaluate treatment efficacy. Outcomes: Neurophysiological assessments supported the ALS diagnosis and revealed the co-presence of diabetic polyneuropathy. Hypotension during the trial necessitated an adaptation to a 2-drug combinational trial (ibudilast and riluzole). Disease progression assessment shifted exclusively to clinical tests of muscle strength, aligning with the patient’s well-being. Lessons: The study raises the significance of personalized therapeutic strategies in ALS by AI-PRS. It also emphasizes the adaptability of interventions based on patient-specific responses. The encountered hypotension incident highlights the importance of attentive monitoring and personalized adjustments in treatment plans. The described therapy using AI-PRS, offering personalized drug-dose combinations technology is a potential approach in treating ALS. The promising outcomes warrant further evaluation in clinical trials for searching a personalized, more effective combinational treatment for ALS patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3