Differential expression of circular RNAs in human umbilical cord mesenchymal stem cells treated with icariin

Author:

Liu Xiaokun1,Chu Xiaoqian2,Li Lingling2,Man Shanshan1,Wang Li1ORCID,Bian Yuhong2,Zhou Huifang2

Affiliation:

1. Department of Pharmacy, Tianjin Second People’s Hospital, Tianjin, China

2. School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

Abstract

Human umbilical cord mesenchymal stem cells (hUMSCs) belong to a multipotent stem cell population. Transplantation of icariin (ICA)-treated hUMSCs have better tissue repairing function in chronic liver injury. This study was to investigate whether the tissue-repairing effects and migration of hUMSCs after ICA treatment were regulated by circular RNAs (circRNAs). ICA was used to treat hUMSCs in vitro for 1 week and the expression profiles of circRNAs were generated using RNA sequencing. Differentially expressed circRNAs in hUMSCs after ICA intervention were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were carried out to predict the potential function of dysregulated circRNAs. There were 52 differentially expressed circRNAs (32 circRNAs up-regulated and 20 circRNAs down-regulated) with fold change ≥2.0 before and after ICA treatment. ADP-ribosylation factors were associated with the dysregulated circRNAs among Gene Ontology analysis. Kyoto Encyclopedia of Genes and Genomes analysis showed that only endocytosis pathway was associated with up-regulated circRNAs, whereas 4 pathways including homologous recombination, RNA transport, axon guidance, and proteoglycans in cancer were related to down-regulated circRNAs. Fifty-two differentially expressed circRNAs and 238 predicted microRNAs were included in circRNAs-microRNAs network. The mechanism of ICA inducing hUMSCs migration may be through regulating circRNAs expression which affects ADP-ribosylation factors protein signal pathways.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3