Development of an immune-related diagnostic predictive model for oral lichen planus

Author:

Bian Jiamin1ORCID,Yan Jiayu123,Chen Chu2,Yin Li3,Liu Panpan2,Zhou Qi2,Yu Jianfeng4,Liang Qin5,He Qingmei6

Affiliation:

1. School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China

2. School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China

3. Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China

4. Department of Stomatology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China

5. Department of Stomatology, Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, Sichuan, China

6. Department of Neurological, Chongqing Shi Yong Chuan Hospital of Traditional Chinese Medicine, Chongqing, China.

Abstract

Oral lichen planus (OLP) was a chronic inflammatory disease of unknown etiology with a 1.4% chance of progressing to malignancy. However, it has been suggested in several studies that immune system disorders played a dominant role in the onset and progression of OLP. Therefore, this experiment aimed to develop a diagnostic prediction model for OLP based on immunopathogenesis to achieve early diagnosis and treatment and prevent cancer. In this study, 2 publicly available OLP datasets from the gene expression omnibus database were filtered. In the experimental group (GSE52130), the level of immune cell infiltration was assessed using MCPcounter and ssGSEA algorithms. Subsequently, differential expression analysis and gene set enrichment analysis were performed between the OLP and control groups. The resulting differentially expressed genes were intersected with immunologically relevant genes provided on the immunology database and analysis portal database (ImmPort) website to obtain differentially expressed immunologically relevant genes (DEIRGs). Furthermore, the gene ontology and kyoto encyclopedia of genes and genomes analyses were carried out. Finally, protein–protein interaction network and least absolute shrinkage and selection operator regression analyses constructed a model for OLP. Receiver operating characteristic curves for the experimental and validation datasets (GSE38616) were plotted separately to validate the model’s credibility. In addition, real-time quantitative PCR experiment was performed to verify the expression level of the diagnostic genes. Immune cell infiltration analysis revealed a more significant degree of inflammatory infiltration in the OLP group compared to the control group. In addition, the gene set enrichment analysis results were mainly associated with keratinization, antibacterial and immune responses, etc. A total of 774 differentially expressed genes was obtained according to the screening criteria, of which 65 were differentially expressed immunologically relevant genes. Ultimately, an immune-related diagnostic prediction model for OLP, which was composed of 5 hub genes (BST2, RNASEL, PI3, DEFB4A, CX3CL1), was identified. The verification results showed that the model has good diagnostic ability. There was a significant correlation between the 5 hub diagnostic biomarkers and immune infiltrating cells. The development of this model gave a novel insight into the early diagnosis of OLP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3