Network pharmacology and molecular docking analysis on the mechanism of Tripterygium wilfordii Hook in the treatment of Sjögren syndrome

Author:

Wang Zelin1,Xu Yanan1,Liang Shufen1ORCID

Affiliation:

1. Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China.

Abstract

Tripterygium wilfordii Hook. F (TWH) has significant anti-inflammatory and immunosuppressive effects, and is widely used in the inflammatory response mediated by autoimmune diseases. However, the multi-target mechanism of TWH action in Sjögren syndrome (SS) remains unclear. Therefore, the aim of this study was to explore the molecular mechanism of TWH in the treatment of SS using network pharmacology and molecular docking methods. TWH active components and target proteins were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. SS-related targets were obtained from the GeneCards database. After overlap, the therapeutic targets of TWH in the treatment of SS were screened. Protein-protein interaction and core target analysis were performed by STRING network platform and Cytoscape software. In addition, the affinity between TWH and the disease target was confirmed by molecular docking. Finally, the DAVID (visualization and integrated) database was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of overlapping targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database shows that TWH contains 30 active components for the treatment of SS. Protein-protein interaction and core target analysis suggested that TNF, MMP9, TGFB1, AKT1, and BCL2 were the key targets of TWH in the treatment of SS. In addition, the molecular docking method confirmed that the bioactive molecules of TWH had a high affinity with the target of SS. Enrichment analysis showed that TWH active components were involved in multiple signaling pathways. Pathways in cancer, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications is the main pathway. It is associated with a variety of biological processes such as inflammation, apoptosis, immune injury, and cancer. Based on data mining network pharmacology, and molecular docking method validation, TWH is likely to be a promising candidate for the treatment of SS drug, but still need to be further verified experiment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3