A Biomechanical Evaluation of Casting Technique and Cast Core Size Effect

Author:

Sprenkle Trenton P.12,Chong Alexander C.M.12,Shearer Jordan D.2,Fisher Brandon T.12,Sauer Brian R.12

Affiliation:

1. Department of Graduate Medical Education—Sanford Health, Route, Fargo

2. University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND

Abstract

Backgrounds: The goals of this study were to (1) compare the effect of casting technique on biomechanical function with different casting materials and different cast core diameters, and (2) compare the strength of a cast based on the number of layers in relation to the core diameter. Methods: Two standardized cylindrical cast model sizes were used to simulate forearm and short leg casts (core diameter: 60 mm, 100 mm) with 2 different casting techniques (non-smoothing vs. smoothing with lamination), utilizing 2 casting materials [fiberglass and Plaster of Paris (POP)]. Each cast was created using 3 different layers (Fiberglass: 2 to 4 layers; POP: 3 to 5 layers). Ultimate load-to-failure and flexural rigidity were analyzed through cyclic 4-point bend testing. Results: The biomechanical comparison between forearm and short leg casts were significantly different regardless of the same number of layers for both casting materials and between 2 casting techniques. Increased cast thickness significantly increased the ultimate load-to-failure and bending strength. An increased core diameter size significantly decreased the cast’s ultimate load-to-failure (fiberglass: 50% to 108%; POP: 10% to 93%) and bending strength (fiberglass: 17% to 35%; POP: 37% to 49%). Casting technique with smoothing with lamination technique had a negative biomechanical effect on POP and a minimal effect on fiberglass. Conclusion: The number of layers to apply for a cast should be based on the size of the extremity. Smoothing and lamination technique did not significantly improve the cast mechanical behavior. Clinical Relevance: The findings of this study provide valuable evidence, analysis, and supplementary knowledge that helps guide physicians in proper casting technique.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3