Shear coefficient of spin viscosity estimation through velocity profiles of a ferrofluid under the effect of an external rotating magnetic field of low amplitude and frequency

Author:

Abstract

The present article describes a numerical strategy for the estimation of the shear coefficient of spin viscosity for a ferrofluid sample confined to a cylindrical container and exposed to the effect of an external rotating magnetic field with a low amplitude and frequency. As far as we know, there are no experimental measurements of such coefficient. Furthermore, the few analytical values reported differ in several orders of magnitude. First, we describe briefly the mathematical model of the system and its numerical solution. Then, the definition of the direct and inverse problems is given as a part of the methodology for estimating such coefficient. Finally, we solve the inverse problem using simulated measurements and two global optimization algorithms. We generate this type of measurements by adding white Gaussian noise signals to the numerical solution of the ferrohydrodynamic mathematical model. Several noise levels in the range of 10 to 40 dB were used to increase the number of scenarios for validation purpose. Results showed an excellent agreement between the estimated values and those used in the numerical solution of the mathematical model. A statistical analysis revealed a normal distribution that was dependent on the noise level. This variation did not affect the results, but showed instead the validity of the proposed method. Additionally, this strategy stands as a computational tool for validating experimental results of the future in situ measurements. Tables 7, Figs 11, Refs 17.

Publisher

University of Latvia

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3