Wnt/β-Catenin Pathway

Author:

Moon Randall T.1

Affiliation:

1. HHMI, Department of Pharmacology, Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195,USA.

Abstract

Wnts are secreted glycoproteins that act as ligands to stimulate receptor-mediated signal transduction pathways in both vertebrates and invertebrates. Activation of Wnt pathways can modulate cell proliferation, survival, cell behavior, and cell fate in both embryos and adults. The Wnt/β-catenin pathway is the best understood Wnt signaling pathway, and its core components are highly conserved during evolution, although tissue-specific or species-specific modifiers of the pathway are likely. In the absence of a Wnt signal, cytoplasmic β-catenin is phosphorylated and degraded in a complex of proteins. Wnt signaling through the Frizzled serpentine receptor and low-density lipoprotein receptor-related protein-5 or -6 (LRP5 or 6) coreceptors activates the cytoplasmic phosphoprotein Dishevelled, which blocks the degradation of β-catenin. As the amount of β-catenin rises, it accumulates in the nucleus, where it interacts with specific transcription factors, leading to regulation of target genes. Inappropriate activation of the pathway in response to mutations is linked to a wide range of cancers, including colorectal cancer and melanoma. The pathway is linked to bone density syndromes and to neurodegenerative diseases, and the pathway may also be involved in the retinal disease familial exudative vitreoretinopathy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Reference12 articles.

1. N. Barker, P. J. Morin, H. Clevers, The Yin-Yang of TCF/beta-catenin signaling. Adv. Cancer Res. 77, 1–24 (2000).10549354

2. High Bone Density Due to a Mutation in LDL-Receptor–Related Protein 5

3. The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer's disease?

4. Regulation of LEF-1/TCF transcription factors by Wnt and other signals

5. B. Hendriks, E. Reichmann, Wnt signaling: A complex issue. Biol. Res. 35, 277–286 (2002).12415745

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3