Insect-inspired AI for autonomous robots

Author:

de Croon G. C. H. E.1ORCID,Dupeyroux J. J. G.1ORCID,Fuller S. B.2ORCID,Marshall J. A. R.34ORCID

Affiliation:

1. Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands.

2. Autonomous Insect Robotics Laboratory, Department of Mechanical Engineering and Paul G. Allen School of Computer Science, University of Washington, Seattle, WA, USA.

3. Opteran Technologies, Sheffield, UK.

4. Complex Systems Modeling Group, Department of Computer Science, University of Sheffield, Sheffield, UK.

Abstract

Autonomous robots are expected to perform a wide range of sophisticated tasks in complex, unknown environments. However, available onboard computing capabilities and algorithms represent a considerable obstacle to reaching higher levels of autonomy, especially as robots get smaller and the end of Moore’s law approaches. Here, we argue that inspiration from insect intelligence is a promising alternative to classic methods in robotics for the artificial intelligence (AI) needed for the autonomy of small, mobile robots. The advantage of insect intelligence stems from its resource efficiency (or parsimony) especially in terms of power and mass. First, we discuss the main aspects of insect intelligence underlying this parsimony: embodiment, sensory-motor coordination, and swarming. Then, we take stock of where insect-inspired AI stands as an alternative to other approaches to important robotic tasks such as navigation and identify open challenges on the road to its more widespread adoption. Last, we reflect on the types of processors that are suitable for implementing insect-inspired AI, from more traditional ones such as microcontrollers and field-programmable gate arrays to unconventional neuromorphic processors. We argue that even for neuromorphic processors, one should not simply apply existing AI algorithms but exploit insights from natural insect intelligence to get maximally efficient AI for robot autonomy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3